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As the performance requirements and the life cycle costs for
jet engines and aircraft increase the need for functional
high cycle fatigue (HCF) control is evident. The purpose of
this paper is to present the methodology of using finite ele-
ment analysis to evaluate viscoelastic damping treatments for
HCF control. Steps for analyzing passive damping treatments
are presented. Deslgn criteria used to evaluate the damping
applications, as well as two methods of calculating the
structural loss factor are discussed. The results from anal=-
yses of a stiffened panel and turbine blade are also present-

ed, :

INTRODUITION

As the performance requirements and
the life cycle costs for jet engines
and alrcraft fuselage increase, the
need for functional high cycle fatigue
(HCF) control is evident. A major con-
cern in jet engines is the HCF failure
of turbine blades., Blade failures
cause froquent maintenance overhauls
raesulting in high life cycle costs,
Another concexn is the reliability of
these components under war time condi-
tions, where the operation time would
bo greatly ingreased and the operation-
al onvironment would be more sevore.
Blade redesign efforts have proven
somowhat offoctive: however, they are

~ extremely oxpensivo and ofton reault in

performance lossos., Likewitge, the de-

- sign of alrcraft fusolage structuros is

often governcd by sonic fatigque, 1In
these casos, high sound pressurce levels
cause the structure to vibrate at its
natural froquencies, resulting in vory

“high resonant strossen which cause HCP

problems. Current design mothods to
roduee thoe high strusses include
strengthning the structures or de-
creasing frame and stringer spaelng,
rosultinyg in welght penalties effocting
alreralt porformnanco. .

A welght officiont nothed to reduce -

HCE is to dissipate vibratory encrgy

through tho use of visvoelastic damping

materials. Viscoelastic damping mate-
rials in the form of free layer and con-
strained layer damping trcatments (some-
times called passive damping) to in-
croase the damping in structures have
been used for sometime {1,2,3) Figure l
shows the types of damping treatments.

In recent year, vibration damping
technology has been successfully applied
to numerous structures to control reso~
nant vibration at both high and low tem-
peraturos (4,5,6]).

Most applications of damping treat-
monts on stractures to dato have been

“*£ixes* for existing vibration problems..
~ A morc prudent approach is to consider .

passive damping in the initial design
stage. This requires sophisticated
structural analysis programs to verify
concoptual designs reducing the number

of prototypos that need to be constructe- .
ed. A finite elemont program which can
predict thu rosponse of damped strue-
tuces has hoen doveloped which meots

this need [7,8). fThe purpose of this
paper is to prosent the methodology of

“using this finite elemont analysis

approach te evaluate viscoelastic damp=-
ing troatments for high cycle fatigue
eontrol, The vesults of analyses on a

. 8kin stringer panel and a high tempera=~ -
ture turbine blade will aluo bo presonts

od.




response involves several steps (also

DAMPING MATERIAL 7

STRUCTURE.
FREE LAYER, COATED ONE SIDE

DAMPING
MATERIAL —
RN .[ .

STRUCTURE

FREE LAYER, COATED ON TWO SIDES

DAMPING _
MATERIAL —, < COVSTRAINING LAYER
r r

[ STRUCTURE B

CONSTRAINED LAYER

Fig, 1 - Types of Viscoelastic Damping
Treatments.

APPROACH TO DAMPING DEBIGN BY FINITE
ELEMENT METHOD

when considering passive damping in
the initial design process, the analysis
can bo used to ovaluate the design con~
cepts by one of soveral eriteria. 1In
the case of a fatigue preblem, the eri-

teria may be a maximum stress lovel dur-

ing resona.ce. However, in the design

of g structure roquiting small vibration »

levels, anethor eriteria may be a ve=
gquired maximum displacoment at rese-
nance., Both eriteria are based on the
fact that damping Limits the response
during reaonance,
tho same basic steps in the analysis.

-In the past, constrained layer
damping treatuents applicd to & stiuce
-ture usually conelsted of a thin laye

- of se)lf-adhesive dawplng matarial eovor=

ad by a thin layer of metal fell {the

constraining layer). in the initial des
sign stage, it ls possible and advanta-

yenus to design the structure as a echs

$osite (sandwich) consisting of ogual -

“thicknosser of metal serving ag the
base layer and constraining layer, bonds
. ol togother with damping material. .
This would be the same as the datpod
gﬁgez steel whioh is comacreially availe
16 :

Our approach to evaluating the efe

~fact ol a damping treatwont on the

Doth eriteria £ollow"

- %y i8 the 1oss fact

see Figure 2):

(1) The first step is to determine
the natural frequencies and mode shapes
of the undamped structure. Once the
natural frequencies are established, the
mode or modes of interest in the fre~
quency band of excitation can be chosen.
Since the loss factor and modulus of the
damping material are frequency and tem-
perature dependent, the natural fre-
quency is needed to select the proper-
ties of the damping material. It is al=-
so important at this time to establish
the temperature range over which damage
or high cycle fatigue is likely to oc-
cur. Note that this temperature range
most probably wiil be narrower than the
broad temperature range that tha com~
ponent will see.

An alternative to determining the
properties of the damping material based
on temperature and frequency at this
point, is to choose a typical value of
modulus and loss factor of a material
where it has peak damping. It then he-
comes necessary to find a material that
has these properties at the reguired
temporature and frequency.

{2) The seccond step in the analy-
g8is progcedurec is to do a forced harmonic
response of the undamped structure. ’
This {8 don2 by applying a vibrating or.
harmonic load to the structure. tThe
lead can be applied at the natural fre- -
quoney of intevest from which displace-
ment and/or stress {8 calculated. Al-

- ternatively, the load can be applied at

diserete frequoncies in a small band--
width about the natural frogueney, to

yield an amplitude versus frequency re-

spense plot (receptanco pleot). From

- this resganao plot tha structural damp= -
- ing gan

o determincd Ly the half-power

bandwidth methed., A small amount of

datnping is ineluded in the base strue=

- ture to gimulate the actual inherent
‘strugtural damping and to keep. the re-
- gponse at the natural frequency from be-.

coming infinite. It should be noted .
that the damping detérmined from the re-
sponse plot will be thie samd as the {n~

“horent damping specificd, and the step

may bo deleted. The reasen the dasping -
will bo the same ae the inlerent dampe-
ing, ¢an boe seen by referring to the
eguation for systed logs tacter by the
Steain Energy Mothod in Pigure 3. - Por
the undamped case with & emall amount of
inhorent dasping, #,® sy 2 .00 57 {whore
d¢ for the ith ele-
Bont) , anﬁ,hq will cherofore be the loss

- factor speeibied for the marerial. Thue,

the roesponge and stross level arve doters

- wined during resonance for uha-unﬂ@wp&d




case, giving a reference by which to
neasure the effect of the damping treat-
ment.

(3) The third step is to determine
the natural frequencies of the damped
structure. The natural frequencies of
the damped structure are going to differ
from the undamped structure because the
damping material and constraining layer
change the section properties of the
structure, thereby changing its natural
frequencies. This is especially true if
the damped structure is a sandwich com-
posite where damping material is sand-
wiched between two metal layers that are
each one-half the thickness of the un-
damped structure. It should bhe noted
that the loss factor or damping ratio of
the damping matorial does not enter into
the natural freguency calculation. That
is, the natural froguency determined is
not the dampod natural frequency. The
natural frequency is based solely on the
goometry of the layers and the stiffness
or modulus of the materials.

(4) The fourth step iz to do a
forced harmonic response of the damped

- dtructure. The same harmonic loading as

in step (2) is again applied to the
structura. Tho loss factor of the mate~
rial does enter inte the caleulations in
this step. The increased damping in

‘--the structuro shifts the damped resonant

froquency slightly highor than the un-~

. damped resonant frequency. Usually the

-shift is small, on the erdor of one per-
_eont or less. - The exact rosonant fre-
quency fer the damped structure is e~
termined by p@rformin? the foreed hae~
wonic responge analysis

quencies  in the neighborhood of the ex-
pected natural frequency, and notine
that fregueney which yields the maximum

displacement for a apacifie point on the :

-Structure. Once the damped natural fre-~
guengy is detormined, a forced reuponze

K analysie at the domped natural frequengy -

~is perforred to determine the stressaé
: ac the damped resopance.

) With this infovmation, the daaign@r
- ¢an now compare the daiped strudture te

the undamped Structure on the basis 6f

stress or displacesent, depending on
whieh oriteria was gelected. If the
daspod structure moots the doésign eri-
Cterla, it may be wise at this point o
dotorriine the less fadtsr or stress ih
the structure during eo€onance at difs
forent terpacaturas to 8¢é how the danmp-
- iRg varies versus tomperature. The pro-
. perries of the danping material are de~
termined at the Aow tosperature and an
- gstimation of the new froguency, and
stepe (3 and (4) abowe are repeatéd.
-The frequenty or the dagped structure
at the new touporature will be diffore

STEP 3

at discrete fro=-

ent, because the modulus of the damping
material will be different at the new
temperature. Although the damping mate-
rial is temperature and frequency depen-
dent, it is not as dependent on fre-
quency as it is on temperature. There-~
fore, a close approximation of the natu-
ral frequency at the new temperature
should be adequate.

DETERMINE NATURAL FRE-
QUENCIES AND MODE SHAPES
OF UNDAMPED STRUCTURE

STEP 1

Selaect pvoper-
ties of damping
material

FORCED RESPONSE, DETERMINE
STREES AND/OR DISPLACEMENT
1 OF UNDAMPED STRUCTURE

8TEP 2

xar——

DETERMINE NATURAL FRE-
| QUBNCIES AND MODE SHAPES
OF DAMPED STRUCTURE

FORCED RESPONSE, DETER= -
NINE 3TRESS AND/OR DIS~
PLACEMENT OF bASPSﬁ
STRUCTURE

STEP 4

| compare results
of Htep 2 to
step 4

: : DETEANINE LOSS FACTOR OF ]
STEP 5 | DAMPED STRUCTURE BY HALF |
(Gpsions | POWER DANDNIDTH O STRAIN
alj ENERGY METHOD

'Vfiq. g - §t§§s ‘£6 Bvaluate Damping

Troatent by Piaite Blemont
hnalysis. :
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. When analyzing a complex structure
~ o NRSE < MpNSEy s Ty xSEyr such as an aircraft fuselage, it is im-
~. i %se, practical to model the whole fuselage or
R . N " even a sub-section of the fuselage. The
y SUERE St IS TN SIRAIN 1RGY FOR THE 47 ELERMT number of nodes and elements necessary
STRALL: ENERGY METHOD _ for accurate dynamic predictions would
be enormous, Therefore, a representa-
tive section of the structure is model-
A ed (see Figure 4). BKowever, by imposing
H ﬁ\ . Aw the proper boundary conditions, two of
! the edges can be treated as lines of
: T symmetry. The effect of this is to give
" I \ ; the model the same flexibility as if
K A four sections were modeled (see Figure
; VA 5). It does, however, restrict the nat~
i AR ural frequencies that can be extracted
: ///' e to the odd-odd modes such as the 1,1
L . 1 mode, 1,3 mode, 3,3 mode, 1,5 mode, etc.
e . Other symmetry conditions would yield
FREQUEACY even-even or even-odd modes (see Figure
HALT -POVER BANDIVIDIH METHOD 6) .

HESPONSE

Fig. 3 - Determination of System Loss
Factor.

The fifth and last step in the
analysis 1s optional. If the system
loss factor for the damped structure is
desired, it can be calculated in two
ways. The first method is to do a
forced vibration analysis at discrete
frequencies about the natural frequency
and the plot the response amplitude ver-
sus frequency. Note that part of this
was already done in order to determine
the damped natural frequency. The loss
factor is then determined by the half-
power bandwidth method, as shown in

.. Figure 3. The second approach is to use
.. 'the strain energy method. In the strain
enerygy method the loss factor is deter-
"« mined as the ratio of the energy dissi-
“pated to the total strain energy stored.
The energy dissipated is equal to the
sum oveY all the elements of the loss g
factor of each element times the strain Fig. 4 - Finite Element Model of Stiff-

energy stored in each element (see Fig- ened Panel.
ure 3),

Two recent projects on which dampe
ing treatments were analyzed will be
presented in the following sections as SUPPORTED
examples of using this methodology. EDGES

EXAMPLES OF DAMPED STRUCTURE DESIGN

The purpose of the investigation of
a skin stringer structure was to lower
the stresses in the resonant condition
by the use of viscovelastic constrained

I

]

|
Damped Skin Stringer Panel b

{

{

{

1
- 1 ]
layer damping. The method and analysis £ N‘L\ !
arc not limited to alrcraft fuselage SYMMETRIC-SYMMETRIC ‘\\\2
structures, but are also representative BOUNDARY CONDITIONS N
of any gencral class of structures cone- :
sisting of stiffened skins or panels. Iig, 5 - Boundary Conditions.
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Fig, 6 - Mode Shapes for Various Symmoe-
try Conditions.

The model shown in Flgure 4 con-
sists of 285 clements and 828 nodes, for
a total of almest 2,500 degreos of froo-
dom,  With the boundary conditions cho-
son, a panel 1,524-mm 160-inches) long
by 813-mm (32-inches) wide was modeled.
the distance botwoon stiffoning ribs was
254-mn (l0=-inches). The crogg-sectien
af tho strueture is shown in Flgure 7,
from whiech fv {n vasy to identify the
variods layers ln the meodel.

The ribs and damplng material layer
wore modoled with selid alements, which
ary shoar deformable,. It {8 important
that the damping layer ig modeled with
shoar deformable vlements, singe a cons=
atrained layoer damping troatment dissle
poated enorygy through shear deformation,
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The constraining layer and panel were
modeled with thin-shell elements. The
panel, ribs, and constraining layer were
aluminum.

The stiffeners were 5l-mm (2-
inches) high, and all sections of the
stiffeners were 1.5-mm (0.060-inch)
thick. The panel directly under the
stiffener web was 2,2-mm {0.085-inch)
thick. From this point under the web,
the panel tapered to a thickness of 1.5-
mm (0.060-inch), in a distance of 25-mm
(l-inch). The taper was actually very
siiallow, and not abrupt as it appears in
Figure 7. This taper represented a two-
step chem~milled panel.

In between the stiffener web and
the panel, a very thin element, 0,13~-mm
(0.005-inch) was incorporated. This
element could be used as a faying sur-
face damping treatment. A faying sur-
feoe damping treatment is a damping lay-
er applied where two surfaces fit to~-
gether and where relative motion or
fretting between the surfaces might oc-
cur. For the undamped runs this thin
element was given the material prnper-
ties of aluminum, and it contributed
iittle stiffness to the ribs.

The approach to evaluate this con-
strained layer damping treatment varied
slightly from the steps outlined earli-
er. The "undamped” structure actually
included the damping and constraining
layers. The stresses for the undamped
forced vibration analysis were obtained
by giving the damping matorial a very
low loss factor, 0.006, the same loss
factor as was used for the aluminum pan-
els and ribs. Por the damped forced
vibratien analysis, theo damplng material
was given its normal loss factor of
approximately 0.9 at the temperatura and
froquency of intorest, and now strosses
wero obtained.

The first fivoe modea of the panel
for the symmotrie-symmotric boundary
conditions aruv listed in Table 1. Our
investigation centerod cbout the third
mode, the 3,3 modc at 120.1 Hz, as shown
in Pigure B.

In the undamped and damped foreed
vibration analyeis, the foree was a har-
monie pressure loading normal to the
purface of the panel. fThe prossure
eorresponded to an acoustic aound pros-
sura level of 165 4, A small amount of
inhoront damping ls included in the base
strueture (loss facter = 0.006) to simue
late actual structural damping and to
kaop the response at the natural tro-
quenci for the undamped case from
becoming infinlte. 7The constrained
layer damping treatment consists of




e 406-mm

{16.0)
. ._.2%-mm o PLANE OF
2.2-mm r 10.0") /SYMMETRY
10.085") 51-mm 203-mm
§ R0 oAe—— 8,0 — | n
g e 1 T Lemm
H - : {0.060")
LconsTRAINING [T L0, 13-mm 0.005n TANEL
— LAYER  LIFAYING SURFACE DAMPING
S1-mm | DAMPING
2.0 — LAYER T
~1  L.5-mm =
1 [~ (0.060"
. /1T
18.5~mm_J
“(0.73)
Fig. 7 ~ Cross Section of Panel Model.
TABLE 1 analyses was to determine the effect of

MODES OF UNDAMPED SKIN STRINGER PANEL

Mode Frequency (Hz)
1,1 48.8
1,3 68.9
3,3 120.1
1,5 149.7
3,5 159.2

0,35=mn %0.014—inch) of 3M campung's
18D 112 damping material (Yropcrt es
chosen at 2%°C (85°F] and 120 Hz) and
0,2~mm (0,008-inch) of aluminum con=
straining layer. The complex modulus
data for the damping material are
shown in the reduced tomperature
monograph in Pliguro 9.

The results ror the undamped and
damped panel are given in Table 2. With
an inharent loss factour of 0.006, the
stress in the undamped panel was 263 MPa
{38,100 psi). Wich the addition of
0.,3%-mm (0,014=-inch) damping layer and a
0.2-mm (0.008-inech} eonstralning layer,
tho less factor incroased to 0.029.
Stross was raduced by 80 poreent to 48.5
Mira (7,030 psi). The addition of the
damping treatment roprosents only a 10
pereent ineroase in weight of the astruc-
ture.,

bampod Turbine Blade

As anothor example of using finlto
olomenis to analyze damping denfqns. the
rosules of anolyses on a turbine blade
are prosentod. The purpose of the

damping treatments on the blade airfoil
on the modal loss factor of the blade.
The forced harmonic response (magnitude
and phase angle) of the first bendiny
mode of the blade was studied for the
following casess (l) undamped blade;
(2) blade with free layer damping treat~
ment: (3) blade with constrained layer
damping treatment; and (4) rotating
blade with constrained layer damping
treatment.

The model, shown in Pigure 10, con-
sists of 234 elements. The axial length
was divided into six sections, ¢giving 39
eloments per section, The cross~-gection
of the blade 1s also shown in Figure 10.
The damping treatment consisted of a
0.25-mm (0.010-inch) layer of Corning
8463 glass covered by a 0.,13-mm (0,005~
inch) layer of nickel. The glass layer
was modeled by twelve elements per sec-
tion, the nickel by twelve elements per
soction, and the blade by fifteen ele-
monts per section., The houndary condi-
tion used in the analysis was the baso
of tho airfoll fully conatrained in the
%, ¥ and 2 diroctions. ‘Tho platform and
root of the blade werc not modeled, be~
cause coordinato datx was not available
for thesc portions of tho blade. fThe
froquoncies dotormined by tho finito
element model wore higher than the fro-
quencies of the actual blade., fThis is
because the root and platform contribute
floxibility to the blade., Howover, for
the purpose of analyzing damping treat-
nents on the airfoil scction of the
blado, this is not a serious limitation,




The analysis of the turbine blade
followed the four steps outlined previ-
ously. That is, the natural frequency
search and forced harmonic response were
performed on the undamped blade and then
repeated for the damped blade.

The purpose of the force harmonic
response analysis in this example was
not to determine absolute stresses and
absolute displacements, but was used to
show the relative decrease in response
with damping as compared to the undamped
response, given the same loading condi-
tion. This is best illustrated by an
amplitude-frequency plot, which can be
generated by calculating the response at
discrete fregquencies in the neighborhood
of the resonant frequency of interest.
From this plot, one can identify the
half-power bandwidths and then compute
EDGE VIEW UNDFFORMED SHAPE the structural loss factor for that par-

‘\\ ticular mode, as discussed earlier. Thus,

e
==

—

the end results of the forced harmonic

"""" e response analysis is the structural loss
factor, which is independent of the load
applied. The loading condition for the

- forced harmonic response was a point
Fig. 8 - Mode 3,3 of Stiffened Panel. load applied at the tip of the blade.
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TABLE 2
RESULTS FOR UNDAMPED AND DAMPED PANEL

0.13-mm NICKEL LAYER
(0.005") ~ 0,25-mm GLASS LAYER

- e

e @2

CRUSS-SECTION OF TURBINE BLADE

oy

10 ~« Pinite Eloment Model of Tuy-
bine Blade.

Fig.

A

. Ao . R % Stress % Weight
Condition Frequency Mode Damping Stress Reduction Increase
1.5~mm (0,060") 120.1 3,3 0.006 263 Mpa 0 0
Panel, Undamped (38,100
psi)
1.5-mm (0.060") 120.3 3,3 0.029 48.5 MpPA " 80 10
Panel, 0.35-mm (7,030
(0.014") damping psi}
layer, 0.2-mm
. (0.008") con~
5?§i straining layer
Ly
3&?: A total of eight configurations and
,g&? sets of conditions were analyzed by the
RN finite element method. The seven non-
@ rotating cases and the one rotating case
are shown in Table. 3.
Figure 1] shows cases 1, 2, and 3
on the same plot for comparison purposes.
Cases 1 and 2 were the undamped blade at
room temperature and 496°C (925°F), re-
MODEL OF spectively. Comparison of these two
plots shows the downward shift in first
TURBINE mode frequency due to the higher temper-
ature; the change in frequency was ap-
BLADE proximately 0.8 percent. Comparison of

case 3 with case 2 illustrates the in-
creased first mode frequency of the
damped blade which was due primarily to
the stiffness of the nickel overcoat,
0f course the most obvious feature is
the marked decreased in response of the
damped blade compared to the undamped

blade.
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Flg., 1l = Comparison of bamped and Un=
damped Responso.



TABLE 3
ANALYSES OF TURBINE BLADE

- . - First Three Composite
Case bescription Modes (Hz) Loss Factor
1 Bare, undamped blade, all material properties 1,085.1 0.002%
at room temperature 1,972.0
3,010.4
2 Bare, undamped blade, all material properties 1,002,7 0.002*
at 925°F (406°C) 1,822.6
2,782.0
3 Damped blade, full blade glass coating with 1,050.7 0.011
nickel overcoat, material properties at 2,847.4
925°F (496°C) 4,032,9
4 Damped blade, full glass coating, all material 920.6 0.008
properties at 925°F (496°C) 1,660.8
2,845.7
5 Damped blade, full glass coating, all material 940.6 0.0022
properties at 800°F (427°C) 1,690.7
2,917.3
6 Damped blade, full glass coating, all material 907.3 0.0044
properties at 1,000°F (538°C) 1,641.0
2,792.2
7 Damped blade, full blade glass coating with 1,082.4 0.0083%*
nickel overcoat, all material properties 2,870.6
at 925°F (496°C), 7500 rpm 4,037.5
78 pamped blade, full blade coating, with nickel 1,058.7 0.0122
ovarcoat, all materlal properties at 925°F 2,874.5
(496°C), glass layer modeled with solid 3,999.2

alements

*nlade material is assumed to have an inherent loss factor of 0.002.

**Thg loss factor is approximate bocause the peak iz non-symmetric; loss factor
wag estimated by using the left side of tho peak and multiplying bandwidth by
two, Analysis includes blade rotation effects.

A gories of analyaes was completed
for & non-rotating blade with an 0.25-
i (0.010-inch) glass freo layer coate-
iny (full blade coverage) at 427, 496,
538%C (800, 925, 1,000°F). The poak
structural loss factor occured at the
tamparature of 496°C (925°F), at which
the loss modulus was also at a maximum,
The complex modulus data for forning
#1483 glass are shown in the reduced tom=
parature aomograph in FPigure 12. The
ampl ltude-fregueney rasponse for the
throo tomperatures is shown in Pigure
13, This plot shows the roduced re-
sponse amplitude of the blade at the
opt imum tomperature., The shift in the
firgt mode froquoncey with tomporature
ear also ho seon.  The structural loss
factourg at 427, 496, and 538°C were
3.0022, 0,000, and 0.0044, rospoctively.

In a structure with a free layer
damping trcatment, the damping is pro-
portional to the loss modulus., The loss
modulus (modulus x loss factor) of Corn=-
ing Glass 8463 wveorsus temporature is
shown in Pigurce 14. Superimposed on
this graph is the structural loss factor
of tho blade with full ¢lass coating.

- From this plot it can be seen that the

loss factor predicted by the finite ele=
ment analysis has the same temperature
profile as the loss modulus. For a free
laver damping application, those are the
tronds oxpectod, Also shown on this ’
plot is the oxperimentally measured
structural loss factor for a blade with
a half~blade glass coating: the pouk
structural loss factor is highor and oe-
eurs at a lowor temparature.
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Figure 15 shows cases 3 and 4 to-
gether for comparison purposes. The
damped blade with glass coating and
nickel overcoat exhibited a lower re-
sponse than the blade with just a glass
coating. Case 4 had a lower first mode
frequency because the glass coating add-
ed mass loading to the blade, but con-
tributed very little stiffness since its
modulus was an order of magnitude lower
than the modulus of the blade material
or nickel overcoat.

Results were obtained for an ini-
tially stressed damped blade (case 7,
glass coating with nickel overcoat).
The initial stress was caused by rota-
tion at 7,500 rpm. The shift in first
mode frequency due to rotation can be
seen by comparing the rotating and non-
rotating cases in Figure 16. The width
of the peaks in each case are approxi-
mately the same, indicating that each
has about the same level of damping.

v ™ P —
CASEQ
DAMPED BLADE
B FULL GLASS COATING .
PROPERTIES @ 4%°C 1925%F)
7+0.008 CASE 3
DAMPED BLADE
g wut GLASS WITH NICKEL
2’ OVERCOAT
g PROPERTIES @ 4%6°C 1925°P)
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Fig. 15 - Comparison of Blade with
Glass and Glass and Nickel.
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Fig. 16 - Damped Blade Response, Ro-
tating and Non-Rotating.

SUMMARY
Concise steps were presented de-

scribing the process by which a damping
treatment can be analyzed. Design

11

criteria used to evaluate the passive
damping treatments were set forth, as
were two methods of calculating the
structural loss factor. The example of
the skin stringer panel demonstrated the
superior weight effectiveness of opti-
mally designed damping treatments for
reducing stress. A ten percent increase
in weight yielded an 80 percent reduc-
tion in stress. This reduction in
stress compares favorably to the results
of several successful damping treatments
shown in Figure 17. The analysis of the
damped turbine blade demonstrated the
effect of temperature on damping per-
formance (see Figure 13) and shows a
good comparison between predicted and
experimental results (see Figure 14).
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DISCUSSION

Voice:  Where dtdvyoﬁ get your viscoelastic

properties from! Were they asounmed?

Mr, Kiuessner: We do a lot of testing on the
vigcoelastic properties of materials at the
University of Deyton, #o u» get them from our
© data bank.  We used a rveduced temperature
noaogram for the material.

© Mre_Olazer {Rockwell International): The firet
sodel that you snalyzed vas & panely did you run
an agoustic test to votttyvyourlunalysia!

Meo Klussener: Ho, ve didn'c. We ured some
test results to use that assuaed loss factor.
Ve had dome test data that said the undasped
los¢ factor vas about 006, ‘That {e vhere ve
© got the assuned {nherent damping from.  We
_didn't coupare the predicted streas O « tedt.
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DETERMINATION OF NORMAL MODES FROM
MEASURED COMPLEX MODES

8. R. Ibrahim
Department of Mechanical Engineering and Mechanics
Old Dominion University
Norfolk, VA 23508

ABSTRACT

A technique is presented to compute a set of normal
mades from a set of measurad complex modes, The number of
eloments in the modal vectors, which is equal to the number of
measurements, can be larger than the numberof modes under
consideration. It is also shown in this paper that the practice of
normal inode approximation to complex modes can lead to
very large crrors when the modes are too complex. A numerical
example and a simulated experiment are presentec to illustrate
the concepts discussod and to support the theoty presented.
NOMENCLATURE

{€) : Damping matrix.

(e ; Modal damping matrix (diagonal).
1+ Frequency in Ha.

4 Imaginury pm of the jth elesnont ot a cumplex
modal vector

(K} : Stiffness matrix.

fk] : Modal stiffness matrix (diagons)).
(M) ¢ Mass matrix, |
fmj: Modat mass matrx (M@nﬂ).

R; : Real part of the jth eleinont of a complex
modal vector,

Gy ¢ Two angles defining sign( ) boundaries for the
: approximated novinal imods slements,

: il ¢ Phase sngle ofthe;u: d&umuaramodul
vﬂcwrw() or 180.0%)

i) Phase angle of uwith element of nmupum
modal vevtor.

¢t ith e&amam of the noemal modal voRtor,
{6y + o norma) modalvector, _'

¥t Jth eloient of the conplex modal wetar.
{6}, : b camples modal veetor, o

13

Aj i ith characteristic root.
w ¢ Natural frequency (rad/sec.).
{ 1 Damping factor.

[ )7 : Transpose of a matrix.

[ 171 : Inverse of a matrix,

INTRODUCTION AND BACKGROUND

Modal vibration tests are carried out to experimentaily
datormine a set of modal parameters for the structure undor
teit. These modal parameters are usually used to verify, deter-
mltne or improve some analytical model of the strueture,
(18).

Most of the appraachos that use experimentally deter.
mined modal parameters for dynamic modeling of structures

- ust one or more of the following equations:

TR U R 1)
1T = m) o
(IR = k) @
(I7ICI18) = (o) W

In &l these exquations, {0} 's wre the narmal modes even
though, in practice, the measured modes are the compley.
modes, which ln soine cases can be very different from
notinal modes, As a matter of fact, in vibration testing and
analysis work s frequently assumed that damping levels
are very smail and/or the damplng matrix s proportional to
elther the mais or fiffnes matrices, an asumption that is
not valid for many of teday's strueturas, Such asumptions

_ aid the lack of differantlation between nornal and comples -

wmodes may be attributed to the lack of a toal to aioasure or
compute the hormal mokdes.

-With the invroduction of computer technalogy W medsl

idensification th tho early seveniies, i) buth frequency domuin '

(9,104 and timo dovatn (11-15] techniques, the guestion of
nonaal versus complax modes startad to perdst for answors.

Ta fresguency domaln approaches, even with hght damping and
well spaced modes, i frequeatly encountered a seattor of
the phase angles aoociatod with the nieasuted @odal seutor,
{12], Some researchers and usiys even went to the extent
of questinging the st and data snalyiis procedures whin
lmplmwh wote it within ¥10" from 0.0° ur 180.0%,




In some cases, the scatter of the phase angles of the modal
vectors was due to the fact that the damping is nonpropor-
tional, and hence the mode shapes are complex. Time domain
approaches to modal identification, which contains no
assumptions regarding the level or proportionality of damp-
ing, also indicated that structures, in many cases, possess
complex modes.

Norma! Mode Approximation to Complex Modes

Normal modes are defined as modal vectors whose
phase angles are either 0.0° or 180,0°. Such modes exist for

extremely simple structures, that do not need any testing any-

way. They also exist for structures with no damping or
structures tailored with proportional damping, none of which
represents today’s complex structures,

Unlike normal modes, complex modes may possess any
phase angle distribution. Each element of the modal vector
is described by a real and imaginary part of an amplitude and
phase angle relative to the arbitrary element. A scatter in the
phase angles of as much as $80.0° from 0.0° or 180.0° is not
uncommon,

Recognizing the phase angle scatter for measured
(complex) modes, and tho noed for normal modes for use in
eguations such as (1), (2), (3) and (4), reseazchers and users
have frequently used normal modes approximation to com-
plex modes,

Figure 1 (a) thows an element of a complex modal vee.
tor ¥, which is complex and can be expressod as:
k'll =R j +il [ (5)

The upprosimate normal mode element ¢; corresponding to

v, b
=9
¢ = s/ /i

{6-a)

o Bradidatio Tt RN SN (8 0

Fig 1= Nubsmal side apprsSimatiog 1o iplss o

1

where the assignment of a positive or negative sign which is
equivalent to 0.0° or 180.0° phase angle, depends on the
angle 8;(6; = tan™ 1I;/R;) of the complex modal element and
its relation to some arbitrary angles &; and «5 as shown in
Figure 1 (b). In other words, the phase angle 5; for the approx-
imated normal mode element ¢; is assigned according to the
equations:

0

B;=0.0

4y<0; <oy (6:b)

B;= 180.0° a; <8, <ay, (8-c)
It is enough to state that, irrespective of the choice of
&y and oy, it is unacceptable to assign two different signs te
two elements of the approximated normal modal vector be-
cause the phase angles of the corresponding elements of the
complex modal vector differ by a fraction of a degree,

Such approximation can lead to erronecus and mislead-
ing results and conclusions. An example is the orthogonality
check where the orthogonality of the muasured modes with
respect to the mass matrix is tested. Large off-diagonal terms
may result not only because of errors in the mass matrix or
inaccuracies in the identification process, but becausc of the
nomal mode approximation to compiex modes,

NUMERICAL EXAMPLE

The purpose of this example is to show that even though
all the parmmeters used are oxact:

1. Complex modes can be very different from normal
modes, even for lightly damped modes and small
nonproportionality in the damping matrix.

2, Large ervors may resuit from sisuming that normal
modes approximated from complex 1odes are
orthogonal with respect to the mass matrix.

The system used in this exnmple ls » ten degree-of:
freedom system, This system was constructed (simulated) by
analytically generating ten normal modes at ten measurement
stations of a dimply supported beam, ten undamped natura)
frequencies and a siiffnoss matrix for the system. The natural
frequencies were selected comesponding te 10.0,13.0, 18.0,
20,0, 24.0, 30.0, 36.0, 43.0, 46,0 and B0.0 Hz. Then, 8 pro-
portional damping matrix (equivalent to 1.0% modal damping
tictor for all the toh modes) nd the mass matrix were eGm.
puted from the assumed infornation, _ —

To make the damping matzix nonproportional, the
damping elements €(3,3), C(4,4), C(3.4) and C(4,3) were
doubled, Complex motes, damping factors, and dumped
nutural frequencles were computed for the system. Damping
faoton changad from 1.0% for all modes for froportionsl
damping cuse te 2.6, 1.3, 1.2,1.2,1.1, 18,28, 3.8, 1.1,
and 1.0 parcent for the penproportional damping case, These
danipiny fuctons are relatively cmall but nevestheloss, ome
aiodes showed high levels of complexity, Table 1 shows tha
twa aiosl complex mode shupes, modes O and 10, listed with
the cotrvsponding normal modes. Phase atglos of a8 much &
98.6" and 74.8° for inodes 9 and 10 are noticed respectively.
Al large differoticos in wnplitudes oxist betweon aurenal snd

To Hlustrate the lanie eiron that may reaull from noraal
woidea approsimation to complon modes, approximated
tormil moded were wied (8 chocking Wi orthugonalily with
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Table 1 — Comparison of Theoretical Complex and Normal Modes

9t Hogt 10t woge,
NORMAL CCNPLEX NORMAL coMnLEX
_'.-- 0.0% { » 45,00 Hz Lo 178 . 15,83 My G ¢ 0,08 f o 50,00 2 wor V0L 89,99 Wz
+ AL, AMFL M : AL, - v, PHA,
100.5% 100.00 T 100,00 169,00 0.0
26,00 53,22 64,3 -58.00 52,95 129
138,00 144,46 -155.% - 8,00 3.94 2.9
168.60 %1 ~ 0.1 45,00 4,84 1.
«38.00 144,19 1%.7 ~100.00 102,48 126.0
-26.00 113.95 «93,9 114,00 19 Wt l.q
136.9; 135,26 3] «38.00 102.2¢ 172.)
168,90 0.2 141 $8.00 83,70 03
94,00 182,99 W8 - 0,00 .1 <.
.00 %.%9 8,7 «56,00 8.2 1A
respect to the exact mess matrix. The results are shown in zvhhere n >‘l m, o‘:imc? isa t?:’l'sﬂ:ld test :mfnuon.l'!‘o cmu
Figures 2a) and 2(b) for different values of ¢y and a9, In e normal modes {rom ven set of complex m
Figure 2(a), &y and oy were chosen as 90° and 270°, while in one of the following two approaches may be used.
Figure 2(b), they ave 136° and 815°. Errors in the offdisgonal
torms are as high as 23,29% for the first case and 35.48% for Approach 1. Using an Quersized Mathematical Model
the second case.
From the given modal parameters, displacement velocity
and acceleration responses are formed according to the
THEORY: COMPUTATION OF NORMAL MODES FROM equations:
COMPLEX MODES
am
In this section, two approaches are presented to compute e} = 3 (W) Mo iy} - ()
normal modes from & measured set of complex modes, The it

required data are u set of modal parameters such as may be .

identified from a modat survey test. These modal parameters 3m _

are namely a st of complex modes {V};,i*1,...,manda ol = L e it (ngte) (1-b)
set of coresponding charscteristio roots A, i=1,. .. m {(and i1 :

thelr complex conjugates). The modal vectors have n elements

) -g Rflé};c‘?*tn;(tﬂ e

r\ S . T -
e ‘ wherte ay(£), ng(t), ng(t) are sdded random nolse of uniform
W e : dhmm‘mmwmmwmmmm :
SEA s s Senr R Qqulmi B . - .
B s ot N2 - L
.:.mf s ?ur;r =,§a:~1. ‘!Li" 1 W - : . ‘“’I - 0 ) {‘(”} - 7
Bt i1 £ % B = 1 ey R I R - . Lo
SO S | i) o[-0k <wre] i m
L WAy oS ay? WY - U Wi .ot N eeey o MG o co- - o
T P de-on heeh yaing speroginiaton wodes . - _
e oty sy o4 somplow s (&) = (A1(X) LR
’ , where [X] and [ V] contain tesponses messured at 2x time -
- : - _ instanue. Prom equation (83, the (A) matix can beldeatis
o L ' (Al (X] (X)) (0
Mol wstom o Ed ek ' Naturally, without any noise, the matrix [X] i singulae
U ) T since the numbet of degress-ol freeiom is Langee than the
w2 G . Bumber of modes prosnt in the responass. A small saount
IR Moy of nolse sakes the invension of {X] pomilie, for the purpose -
v 7!.]1: £ Lt TINE méy :.m,x feRay :zu-f & R . ““Wm mw mtm‘bﬁ. ?ﬂ QWO m w m )
L Wi M 9aEn nat e~ . 5213 W Werog nde - w&“ “m. “ O.M;:‘m M "" .o?igwm 8
ok 12600 matrix of w vunk of 4 without » Lion:
P 3 oty i i e S g k4 iU o condl,
Al nweded for computers wilh lais sccuracy. '
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By computing matrix {4 ], the [M™ 1 K] matrix gives
normal modes according to the eigenvalue equation:

M 1K) ¢ =w? ¢ (10)

Approach 2. Using Assumed Modes

The given set of complex modal parameters satisfy the
equation:
y i
AV

(MK M) ‘ } ={=2y,) (i=1,.m) (11)

Since we only have m modes and the system has n degrees
of freedom, equation (11) cannot be solved for [M~1K M~1C].
Let us assume that there exists a set of vectors {P}; and a set
of characteristic roots sl-.j =m+1,m+2, .. n. Thisset of
assumed parameters are selected such that:

)\ifksj
1P}, # 10,9y - ¥, 1 {a)

where { a} is any vector of coefficients. The second equation
{12-b) implies that {ﬂj and {y} ; forall i"sand j's form a linearly
independent set of vectors. In such a case, it can be written that

(12-a)
(12-b)

P

2p. = {-sfp,} G=m+1l,m+2, .n)
] (13)
and equations (11) and (13) can be solved for [M™1X M~1C)

from which normal modes are computed according to
equation (10).

M1k M 1c)

1t is extremely important to point out that [M~ 1K)
and [M~ ! C} obtained from either approach are not unique
since they are functions of the introduced noise of the as-
sumed modes. However the set of normal modes, correspond-
ing to the set of given complex modes, was found to be
independent of the introduced small levels of noise or the
assumed modes, [14].

SIMULATED EXPERIMENT

To test the validity of the theories presented in this
paper, the ten degrees-of-freedom system previously discussed
in the section “NUMERICAL EXAMFLE" is used here as a
simulated test structure. Response time histories containing
contributions from the last four modes measured at the ten
stations were generated, The last four modes were selected
because the last two modes show a high level of complexity.
Simulated measurement noise was added to these responses,
with a noise/signal r.m.s. ratio of 20%, to represent condi-
tions in a real test. From these responses, the complex modes
and characteristic roots were identified, using the time
domain approach [11]. Normal modes were computed using
the two approaches presented here. The assumed modes
approach produced results identical to those of the oversized
math model approach,

Table 2-A and 2-B list the identified complex modes and
the computed normal modes for the last two modes. A close
examination of the computed normal modes, in comparison
with the theoretical ones, indicate the validity of the
approaches presented.

Table 2-A — Identified Complex Mode and Normal Mode

(Mode No. 9)
THEQRETICAL it IDENTIFIED
NORMAL COmPLER L MORMAL COMPLEY
10 0,93 7 = 26,15 My e 1,75 F o 45,8 N2 g e 001 f~ 46,0 H2 ¢ m 2,63 1 w 45.9) Mz
. e, e, PHAO, + AMPL, Ao, MAS,
105,00 106,00 0.0 100,00 100.00 9,2
2.0 1,27 68.3 .18 62,93 55,0
«136,00 144,46 =186.% =136.76 152,62 ~154.0
164,00 167,72 «0.3 170,00 164,99 2.2
-38.00 144,19 16,2 -97.6% 135,88 132.6
-24.00 111,95 -98,% «3%.95 102.7% «1M.2
134,00 135.2¢ ) 145,61 49,18 0.3
T (O Y o el w0
ﬁa.oo %.38 18,7 8,32 3.5 a,s

Table 2-B — Identified Complex Mode and Normal Mode

(Mode No. 10)
KLY [CA; EIARH AT
[P [ o NORSAL oLLr
RE AR A Y] v 1,641 0 e 0,0 M L0 0,08 f . 8,0¥t RIS SO N
190,90 1,00 2.0 0,00 100,00 0.8
LI 57,95 7.0 -5 .07 v 170,
PR .94 o1 8,39 13,44 2
4. 54, 8% 13 33,02 3110 .
wlin,mn 192.4% 17,0 AT LY ”n (RN Y
e, 112,41 o9 (L K e, XY
%0 107, 12,3 om0 H.n [HRY
“.0 85,70 0.3 [N LINY] SR
0.0 L] o LNT] (X1 RN
RIRA 8.7 1.0 BN s [BLR)
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Figure 3 shows the orthogonality check matrices. In
Figures 3(a) and 3(b), approximated normal modes were
used with (90°, 270°) and (135°, 315°) for (&, orp) respec-
tively. In Figure 3(c) the computed normal modes were used.
Errors of 21% and 48% are noticed in the off-diagonal terms
for cases a and b respectively, while the error for case ¢ was
only 5%.

1 0o 1.000¢

4 ot <Gl Lo

. 3014 -0y oaeee a9 by S W

- NH iy - TR V"’CU,J -4282 iy - 4D ptuee

Q) Using approxnimated complex
modés @) = 90 g = 01

S EE 1 X

! iy ALY )t

1cHUving computed normat macas
Fig. 3 Oethogonality check mateix using ldentified modes

103 Usiny approximated complex
modes lg) = 1, g2= i3)

CONCLUSIONS -

1t s shown in this paper that oven for low levels of ‘

© - damping for structures with nonpropertional damping. com.

plox modes can be very difterent from normal modes, In sich
eases, normal mode approximation te complex medes may

" lead o large orron in orthogonality checks or bs any use of
'tm qwoaumawd modes as normul modes,

A technijue is presented to compute notmal mwes

“from measured complex modes. Computed normal modes

eliminate any errore that may resull from using normal
mode wmimﬁm 1o complex moda pmdueed by nen:
proportiona damping.
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portrayed.

Mechanical support fixtures comprised of short beams and joints have natural
frequencies which may differ appreciably from predictions based on slender

beam theory and which neglect joint properties.
mation on the role of Timoshenko effects and joining properties on the first
several natural frequencies of frame structures.
these properties and the number of vertical bays of the structure is also

This paper presents infor-

The interaction between

INTRODUCTION

Frame structures are regularly used to sup-
port equipment inavibrational environment, such
as shock and vibration test stands and rotary
equipment mountings. As resonant-free supports
are desired in such settings, compact struc-
tures composed of stiff beams tend to be used.
Then, the size of the joints and short beam
effects play important roles in the natural fre-
quencies of the frame.

Frames are typically constructed of stan-
dard beam members fabricated with welded, riv-
eted, or bolted joints, which represent flex-
ible arrays; often, their size is not small
compared to the length of the members of which
they are constructed,

This paper presents information on the
vibration of plane rectangular frame structures
with flexible joints. Because there is inter-
est in a large spectrum of natural frequencies
for supporting structures, the beams and col-
umns were retained as distributed parameter
models represented by Timoshenko Beam Theory
{1}, Joints are modelled as end connections
with both axial and bending/shear flexibility,
and with geometric size,

The deformation of joints connecting
structural members hac been studied, primarily
using experimental methods {2-11}. Joint flex-
ibi1ity can have significant effects on inter-
nal forces and moments within the structure and
hence, on 1ts natural frequencie., as demon-
strated by Lionberger, et al. {12}, who studied.

19

only joint effects in slender beam strugtures,
using Tumped mass models.

In this paper, joints are considered as
independent structural elements with mass, geo-
metric size, and flexibility. Joint deformation
is characterized as a sum of rotational and
translational components as described by Field-
ing {13}, Figure 1. Five types of planar joint
displacement and deformation are included:

13 rigid body rotation,

2) rigid body translation,
3) bending deformation,

4) shear deformation,

5) axial deformation,

To place the combined effects of short
beams and Joints in the context of application,
the effect of the number of bays, or vertically-
connected cells, of the frame was included in
the predicition of natural frequencies. These
correlations are valuable when automated proce-
dures, such as finite element methods, are used
to determine natural frequencies, as the role of
Joint properties can then be understood when
model1ing the structure,

MATHEMATICAL REPRESENTATION

As vibrational amplitudes are regarded as small,
static and dynamic coupling, and coupling be-
tween transverse and longitudinal beam vibration
in the continuum equations are neglected. Howe
ever, transverse and longitudinal coupling
gciurs through the boundary conditions, or
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Figure 1:  Joint Deformations and Displacements

The mathematical frame model composed of d‘ ¥ 2,2, 2 d2 v
Timoshenko beams and inertial/flexible joints, ur S {r¢ + &%) sy
s described in Figure 2. Joint tnertia {imng}, d¢g ¢
axial stiffnoss {n?. and combined benging ahd :
shear stiffness (y) are included. Joint size is
tncluded by baam length (L') of sfze less than <21 - b2 e g2 ¥ «
center-to-ceater joint length (L), The selution _
is formulated by applying the method of Wang and :

Kinsman 14 , whore dynamic moment and shear ‘ 2 2 a o8
slope-deflection equations were developed for {1 - b° ¢“ s“) QL €1
Timoshenko beams with rigid ends. The non-

dimensiondlized forms of tho oquations are:
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Figure 2: General Model of Combined Frame and Joint Properties

QE%~ R bz (r2 . sz) QE% Translational:
& 4 Y(0) - (t)5) oy (3 (0) = ¥ + (ty,5) 0,
TIPS

") - (ty) 0 (G (1) = ¥y = (1) 0y
where symbols are identified in the nomengla-
tur@, The solution of these equations for the
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teristic equation from which natural frequen-
cies are calculated. Computerprograms (FREQF2,
MODEF2, RESP2, FREGS2) are given in pages 168-
192 of reference {15},

RESULTS AND INTERPRETATION

An initial perspective of the role of joint
flexibility on the fundamental natural fre-
quencies of multi-bay structures is provided in
Figure 3. There, Timoshenko effects are neg-
lected {r = s = 0}. As the number of bays ?or
cells), N, increases, the role of joint rotary
stiffness, «, hecomes of lesser consequence.
However, for one or two bays, the role of joint
flexibility is a dominant factor. Theeffects of

L

slenderness ratio ([%0 of the frame bay geo-

metry, interactive with joint flexibility (a)
are depicted in Fi?ure 4, The fundamental
natural frequency is significantly affected by
joint stiffness for all slenderness ratios.

Whereas Figures 3 and 4 depict the sensi-
tivity of the fundamental structural natural
frequency to bay numbers, joint stiffness, and
slenderness geometry for classical slender
beams, it is important to understand the rele-
vance of Timoshenko rotary inertia and shear
effects on natural frequency. This perspec-
tive is supplied by Figures 5 through 7.

Figure 5 11lustrates the dramatic effect of
flexure parameters on several of the lowest
structural natural frequencies of a one-bay
frame, Here, axial stiffness is infinite,
while joint shear and bending stiffnesses are
represented by a common parameter, . The
departure from slender (Bernou)li-Euler) beem
theory is progressively greater as the mode
number increases., The second mode, symmetric

_about the structure's center, demands greater
joint relative motion, and consequently at
low joint stiffness levels (u), that effect is
responsible for greater deviation of second
natura) frequency values for slender and Timo-
shenko beams,

The role of axfal deformation of both
Joints and boams is depicted in Figure 6. Two
estreme cases are graphed: for axially tafin-
{tely stiff members (n » «) and for non.exis-
tent axfal stiffaess {n » 0). Again, the
wffect of axta) stiffness ts progressively
evident ay the wede number incredses. In
_addition, the role of axial stiffness s more
proaounced for any mode for infinitely stiff
joints {n bendin? Sq a 0), Under this condie
tion, the copatibility Yaws relating the
kineatics at the joint boundaries demand
greater axial motion 1f joint tnternal rotary
distortion 15 provented. HNaturally, the strue-

ture then becomes more sensftive to axtal flex~ -

fbility, as veflected ia the variance botween
dashed gnd s0) $d curves for cach wode numbor
ﬁtﬂ’- . °

Another tuportant man!festation of axial

flexibility arises as the number of structural
bays increases. The combined role of both axial
and bending deformation of the joints for such a
case is illustrated in Figure 7. Here, as a
number of bays (N = 5) exists, the mode shapes
associated with the higher mode numbers demand
progressively more severe relative motions be-
tween bays for higher mode numbers. This con-
trasts with greater curvature within beam mem-
bers at higher modes of a one-bay frame. Con-
sequently, with several bays, the joints are
worked progressively harder as the mode number
increases, and the natural firequencies are of
pronounced difference for a given mode for two
typical values of bending stiffness, &, These
frequencies are somewhat insensitive to axial
stiffness for the low modes unless bending stiff-
ness is very high (a =+ 0).

CONCLUSIONS

The role of computational systems to study
the dynamic response of multi-degree-of-freedom
systems has permitted the analysis of vibratory
response inconceivable two decades ago. The
quality of answers naturally resides in the
decisions introduced in modelling effort which
generates inputs to these algorithms, This
paper demonstrates that frame-l1ike structures
of practical shape have natural freguency prop-
erties quite sensitive to end fixity (joint)
conditions, Whereas joints may be difficult to
model, metnods have become available to do so,
and deliberate thought should be given to proper
characterization of their contributions. The
difference between fact and fiction in computer
output may rely on adroit effort in this regard.

NOMENCLATURE

b dimensionless natural frequencys
2.2 ,4
b* » w® all

k shear coefficient (shape cuefficient)

uﬁ mass of J‘h joint

r dimenssonloss redius of gyration of
beam or column ¢ross-section; :
rz s l/AL2

s _4457(kh6:§)

tl'\ tz Joint width, 1, 2,

%  position coordinate along beam or

- eolumn axis

A boam or column crose~sectional area

€ modulus of elasticity '

6 shear modulus

1 beam or column cross-sectional

womont of inortia
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o

4.

L' beam or column length exclusive of
joints
L beam or column length, center-to-center
of joints
M moment at a joint
N number of bays, or cells
Q external transverse dynamic load/length
on beam/column
T axial force at beam end
Uij axial distertion of joint
X vertical translation of joint
Y] transverse transiation of joint
Y transverse motion of beam or column
incremental element
o dimenstonless combined bending and
shear flexibility of a joints, ed/M
Y weight per unit volume
n diﬁegsionless Joint axial flexibility
o UE
by
8y 8y rigid body rotation of Jjoints 1, 2
948 relative bending distortion angle
B4 relative shear distortion angle
&g relative Qistortion angle = O4sn ¥ %4p
B '
W angular frequency.
¥ rotation of beam cross-section
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SOIL STRUCTURE INTERACTION AND SOIL MODELS

John M. Ferritto
Naval Civil Engineering Laboratory
Port Hueneme, California

data.

ABSTRACT

Soil-structure intertaction effects can significantly
alter the computed seismic behavior of a structure. The
accurate characterization of the nonlinear soil behavior
is important in considering seismic amplification and
attenuation. A detailed discussion of soil models, fit-
ting of parameters and coaparison of results is presented.
A comparison is given of linear and nonlinear example

INTRODUCTION

Soil-structure intecvaction effects can
significantly alter the seismic loading that
teaches a structure. This mreatly influences

the response of the structure. To complicate

the problem, the Navy has unigue, complex
structures such as piers, drydocks, pover
planty, tontrol towers, and fuel tanks.
Advanced techniques for analysis of these

structures are of interest, One tool in wide

usage is the finite element technique. The
tinite ¢lement method has an advantage over
other wethody in that structursl elesents and
structures themeelves can be easily modeled.

However, the sewi=infinite soi) field hus to

be modeled by finite soil elements with pre-

scribed boundary coudivions., The selection of

proper waterial characterizatione of the non-

.linear soil behavior is iwportant in congids

ering seismic suplification/attenvation.

_ Recent earthquakes, partizularly those ia
Alavks, Japan, and Chile, have cwphasized the
high damage threat the sofl liquefavtion phe-
HoMeaOR poses Lo waterfromt structures. These
expreiences have shoun that both the nature of

vaterfront fecilities, such a3 earth-retaibing

strioctures, sud the depositionsl environment

“of the cosstal marine soil contribute to-major
A study conducted by the -
- Office of Naval Research (Ref 1) rvcogaized a

major liquefaction hazard existing at West
Coast Naval stations. A more recent favesti-
gation at the Naval Air Statien (NAS) North

- 1sland, CA, (Ref 2), concluded that liquefac-

tion under design earthquake levels could
result in destruction of such eritical struc-
tures as aircrafv csrrier berths, avistion
fuel tank farss, and underground utility ser-
vice lines. Unfortunately, alwost all pre-

vious studies of the liquefaction problem have : g
_been concerned with either conventional build-

ing foundations or with analyses of dams, and -

_ procedures for snalysis are not availedle for
_special(:cﬁ Navy structures.

The effective stress sodel i3 ol major
sigaiticance since the Nivy sust locate in
areas vhere the water table {8 high., Bven if
liquetuﬁtion (a loss of shear stress from a
loss of effective vonfining stress) does not
octur, a buildup of pore pressure {s probable
both in sands and clays. Thin pore pressure
buildup can be of major significance to s;rue-
tural behavinr,

The Navy has a drydock ceetitication pro-

 grew in progrews. These structures aee

exuagles of gitustions vhere o struciuce is
surrcunded by soil, often with a high vater

- table. A brief-review of certification reperts

shova that high laqueteetion potestial, flota



=

s

L e
e e
ST

~ £

e
-

S
?

)
oy

g

A

nf';_';\./,l’

P

, o,
o

T

s
.

)

" o o o

tion, and floor and wall failures are possible.
Drydocks are critical Navy structures; however,
present analytical techniques reflect the
state-of-the-art as of 1950. Basically,

static structural analysis procedures are used
with estimates of the soil pressure. The dry-
dock illustrates the significance of the soil-
structure interaction. Soil loading causes
wall deflections which, in turn, alter the
soil load. The effective stress soil model is
a critical tool for use on waterfront struc-
tures. Dynamic analysis techniques are essen-
tial for a realistic assessment of drydock
safety. Drydocks are only one application;
others include quaywalls, bulkheads, retaining
walls, ocean floor structures, etc.

Two points are significant: (1) the Navy
needs a dynamic analysis capability to accu-
rately evaluate structural safety of facilities
such as drydocks, and (2) presently no such
capability exists.

There are procedures in use mainly in
support of analysis of nuclear power plants.
Code: such as SHAKE or SLAVE are used to com-
pute amplification of vertical shear waves.
Material parawveters are strain dependent and
linear. Two~dimensional programs, such &s.
FLUSH, perform linear strain dependent anslysis
vith quiet boundaries (do not reflect earth-
quake loading wave). TRI-SAC is a similar
code using elastic materiz] properties. TRANAL
is a nonlinear finite element code and STEALTH
is @ finite difference code. None of these
considers effective stresses in the soil-
structure problem (Ref 3). ‘

The state-of-the=art of soile-structure
analysis is limited. The influence of surface
features i# uncertsin. Undulating subsuicface
layers can create problems in modeling. There
{s a frequency dependence of response spectra
relative to the dynamic properties of the soil.
Limitations of the present procedures arz
becoming more apparent as technology improves.
Since ground motion is so dependent on soil
filtering, specification of motion levels
should be at the surface since bedrock motions
are not measured or known with certainty.
Horizontal propagstion of motion, not consid-

- ered in most analyse, creites rotationa)
_excitations as s result of variation of ground

motion acroes a foundation. The resulting
rocking and torsional excitation may increase

“translations depending upon the phese of the

sotions. Although three-dimensional teehniques
have uot been used, only three-dimensional.

" techniques can captuie radiation dsmping
- effects. )

The structure resting on a soll fleld {s
excited by a dyrawmic inertial force, resulting
in displacements of both. The shaking strue~
ture disturbs the ground wodion, creating
secondaty waves. These secondiry vaves travel-

through the finite elesent spatial grid (wesh)
- and feath s boundery. The boundary ie & Yimis
“tation ol the analyais sod does ast exist ia

the sctual caye. The presence of the boundary
can cavie o retlection of the wave. When
linear waterial propertios are uxed, veflecs
tions can be minimaed for sbear vaves by use

of springs and dampers. These then form trans-
mitting boundaries (reducing reflection). The
solution of the true soil-structure interaction
is obtained by superimposing the free-field
solution with the structure-soil solution. If
nonlinear soil properties that affect the
stiffness and damping are used, superposition
is no longer valid. A possible solution to
the nonlinear problem is to impose the free-
field solution at depths along the boundary.
If the boundaries are taken a sufficient dis-
tance from the structure, effects can be mini-
mized.

This paper will present results of evalu-
ations of material models and an approach for
8 soil-structure anslysiu.

COMPARISON OF MATERIAL MODELS

Reference (4) gives an in-depth discussion
of the material laws studied presenting signif-
icant amount of individual mcdel evaluation,
including background development, parameter
studies, and fitting procedures. Three models
vere selected for study:

1. Sandler CAPT5 model (Ref S5)
2. Prevost effective stress model (Ref 6)

3.  Zienkievicz LIQU model with Nohr=
Coulomd and critical state
foraulations (Ref 7)

The CAP?5 model is a plasticity model
defined by a nonsofteuing convex yield surface
and & plastic strain rate vector that is normal -
to the yield surface in stress space. The
yield surface is defined by asans of & failure
envelope aud a hardening cap.

Failure envelope
Cap Jy mF)

Figure ] shows the yield surfaces. The failure
envelope must Ue & dacressing fuaction of the
Jy axis to the failure eavelups; the yield
s&rm:a must be continuous. :
Within the yield surface the material

‘behavior is isotropic elastit defined by the
“bulk snd shear moduli (Flgures 2 and 3), vhich

are of the form:
) K = ‘(Jlok)

¢ = oy, ¥)
The hardening parameter, k, is defined as the .
functional of the plastic volumetrie straiv,
The plastic volusstiric strain is defined in
:;m of materisl parameters V and D (Figure
1 ]

e P * Ve (D X(K)] + 13-
vhere X(k) 3K - R (k)

- & = waterdal pavemeter
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" The csp is a consequence of the stability

requirements and is prevented from actinog s &
softening yield surface. If dilatancy octurs,
the shrinking of the cap is limited to ensure
it remains finite. A tension cutoff hm

In the Prevost, Figure 3, soil model lbc
phase medium consis-

ical model that descrides the nonlinear, sniso=
tropic, olnto-plunc. stress and strain
dependents, aud strength propercties of the

- skeleton when subjected to a three-iimensionsl
‘loading.

Prevost develops the coupled field
tensor equations for s saturated soil cousise

- ting of a perfect fluid and » plecevise=linesr,

time~independeat porous skeleton where the
pore fluid and the solid grasns sre incospress-
The geaeral formulation of the field

1, Usdraieed

2. Iolly-éuiu«‘.

3. Fully desiand steady state
elnuc m plastic components of deforws

- tion dee sep2roted aud it {9 sssumed the eles-

ticity of tbe saterlal is {ustropic and linear .
ia slesr. Shesr nonlineariiy and anisotropy
result from the asterisl's plasticity. The
elostic conpotients ste related by a unnuud

o M‘a lav ia ma the shesr modulun §s
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2 tunetion of the effertive wear norial stresy,

- The wodel uses a sersos of yield surfaces vith

a normality flow eule of plasticity. The rule

Of isotvepie plastic hardeniog is not adequate
for s0ils in eeneral sines under unloading and

leaging ceversals ie ienlies €lagtis vehavier

evplusively uniil the steexs is fully reversed.
Tosz dats show hoth elastic and plastic defor

makions deewt v2ll befcre he stress is fully
eeversed, To accsunl fof Lhis combination,
{sotrapic and Kinematic plastic hacdening rule

is used v stlow the yield surfases to be
translated o stress space as vell av to change .

i oside.  The yield surfaces' initial pesitiou

_and sige reflect the past stieis<sliaih hiss

toty, The Gutermest “boundaey™ wuflace (2
“voluaeteie® yield sueface whase size, posis

. Lish, and movement are fuucticas of material

IOV

density. Points C and E (Figure 5a) define
the critical state conditions for triaxial
compression and extension and the slopes of
lines OC and OE remain constant. An associa-
tive flow rule is used on the yield surface,

f , to compute plastic strain rate vector com-
pbnents. A plastic modulus is associated with
the inner yield surfaces and varies along the
yield surface. Projections of the yield sur-
face onto the deviatoric subspace define
regions of constant plastic shear moduli. A
nonassociative flow rule is used on the yield
surface. The plastic deviatoric strain rate
vector, however, remains normal to the projec-
tion of the yield surface onto the deviatoric
subspace. All the yield surfaces may translate
in stress space, touch and push each other,
but they cannot intersect. When the stress
loading point reaches yield surface all the
yield surfaces are tangent to each other at
the contact peint. If a stress rate is then
applied such that the stress rate vector
points outward, the plastic strain rate vectors
are given by the nonassociative flow rule.

The yield surfaces translate together and
remain together based on the stress path.
Overlapping of the yield surfaces is prevanted
by restricting contact to points only having
the same outvard normal. The pore pressure is
related through the bulk modulus to. the plastic
potentisl.

The Zienkiewica soil model Figures 6, 7
and 8 is formulated in terms of s plasticity
wodel.  An elastic limiting yield aurface can
be formulated in teras of an effective stress
teasor and s hardening parameter which is a
function of plastic strain., Elastic straining

eccurs below the yield surface and both elastic -
“and plastic strain occur on the yield surface.

The direction of plastie strain is defined by
the plastie potential function. A flow rule
for plastic strain ean be written relating
etress to plastie strain, The total, stress~

. depeadent , strain incremeat can be divided

iato elastic and plastie parts.
HODEL RESULTS '

Figures 9a<c present a comparison of the .
#odels under triaxial loading with 50 pei con- -
solidation pressure, Test data are taken from
‘refevences 8, ¥ and 10. All models sve satis-
factory in evaluating both shear and volumetris
leading. The Pravost wodel gives the best Fit
to the experismental data,  The ralculation vas
reprated for a triaxial loading with 100 pai
consolidation pressure, Data for the CAPIS

. und OCZ wedels are used directly, only changing

the conselidation pressure. Data for the
Prevost wodel are wcaled by a techaiyue dis-
vusxed in peference 4. Pocformance of the

- wodels vas siwilar to the previvus test

a2
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rosults. o -

Usiag the draiced Lsotvopic material props
etties, undraived testa were siwulated using
the Zienkiowicd eritical state addei and the
Provost @odel. Resvlts are shown ia Figure 10
for different consolidations, Both tests - '
ebibit good agrececnt fu stioss=sieaiu
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Figure 6. The Mohr-Coulomb failure surface in
principal stress space representing the yleld
surface of an associated plastic model (Model
A).
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Fipure 7. A non-agsociated ideal plastic model
with potential and yleld surfaces of similar,
Mohr-Coulomb, form (lodel B).
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Figure 8. The critical state model (with a
Mohr-Coulomb critical surface) (Model C).
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Figure 9c. Cook's sand 50 psi triaxial test.

behavior and poor agreement in stress pat
(stress-stress) tracking. The fitting of the
critical state model parameters, although sim=
ple in concept, did not allow the model to
match the volumetric data closely. This is
thought to be the major cause of the problen.
The best fit parameters force the model to
overcompact (densify) the sand, resulting in
high pore pressure and loss of stremgth. The
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Figure 10b. Cook's sand undrained trlaxial
tost, 100 ‘vsi confinement.

. extent of pore pressure generstion is very

sensitive to the fluid modulus. This may be
tuned by matching tesi data. The model exhib-
its pore pressure buildup both in loading and
unloading. This, although crude in approach,
does show cyclic degradaticn effects. Cyclic
degradation effects are not presently included
in the Prevost model. '

R s P s P T TR T, N R D R N  E T R T R T R R T " A " R L T T e i b 'S I R R E T D IS LYY IS T NI B T Iy



STATIC LOADS

Dynamic analysis requires the correct
transmission of the exciting wave. The deter-
mination of correct stress amplification or
attenuation is dependent on the material char-
acterization. Most studies in the past have
characterized the earthquake soil structure
problem using strain-dependent elastic proper-
ties. One aspect of this task was to evaluate
stress attenuation using nonlinear material
properties. This effort is directly related
both to the earthquake soil structure problem
as well as to shock/blast analysis work.

In the nonlinear representation of a seil,
traditional superposition of elastic static
and dynamic solutions is no longer valid. The
initial static stress state determines the
ambient conditions for the dynamic loading.
Consider a building sitting on a soil field.
The stress state from the structure load
imposes a different stress state on the soil
from that of the free field. One approach is
to calculate a uniform gravity on the soil
field then "birth" the structure (have portions
of the structure enter the calculation at dif-
ferent time steps). Thir stress state would
then be the start for the dynamic solution.
The CAP75 model has a gravity pressure, which
is essentially a shift along the J, avis,

This loads the element hydroslatically
rather than with an appropriate K value for
horizontsl stress. To allow for § simplified
starting point, the basic material amodel was
modified to allow both a gravity shift and a
X # 1.0 condition to be reprasented. This
iﬂposed s nonzero value of J,, which required
that the cap be moved outwar& such that the
starting point would be on the fuilure surface.

The ADINA restart option was used for
dynamic analysis; it is not possible to first
verform a vertical gravity analysis and then s
horizontal shaking anelysis since the boundary
conditions would be different. Results from o
typical static gravivy analysis can be used as
the basis for material property shift, then
the static structure stresses and boundary
displacement can be calculated, Theso static
{structure load) displacements are reapplied
at prescribed boundaries, repeating the static
load case. The solution is then restarted,
applying horizontal boundary displacements
based on the dynamic shaking.

To summarize the procedure:

1. Calculate gravity shift.

2. Perform static analysis of suil aad
structure, cvaluating atructure

vaight displacements. Boundary con-

ditions are horizontally restrained .
and vertically free. Determise
boundary displacemonts. )

3. Ferform & dynsaic soll column study
to evaluate dynsmic boundary horigun-
tal displeceaenits from shaking.

4, Perform a dynamic soil structure
analysis to repeat soil-structure
with displacements prescribed. First
quasi-static (dynamic with long time
steps) for gravity; then restart
with shortened steps for dynamic
shaking.

ELASTIC ANALYSIS

Using the approach outlined above, a soil
column mesh was excited with an earthquake to
simulate free-field motion at various depths.
Cook's sand (strain-dependent) properties were
utilized in this analysis. Horizontal boundary
node displacement, velocity, and acceleration
histories were computed. A static analysis
was performed using the mesh shown in
Figure 11. Gravity loading was used to apply
the st.ructure and soil gravity loading to the
soil, Figure 12 shows the static response.
Time functions were constructed using the ver-
tical mesh boundary displacements from the
static analysis and the horizontal dypamic
shaking displacement of the soil column. These
displacement fuuctions were applied to drive
the horizontal and vertical mesh boundaries,
first repeating the "static analysis" using
large time steps then rectarting with a smaller
dynamic time increment, Results are shown in
Figure 13. The soil column response indicates
some amplification of the base motion. There
is considerable reduction of motion under the
structure as shown by the time histories
beneath the structure when cospared with free-
field response. This is shown clearly by the
contour plots of acceleration and velocity
which give vector magnitudes at a particular

- time, The results shown are for the conditions

of this problem and are not meant to express
general conclusions. :

NONLINEAR ANALYSIS

The previous analysis was ropested using
the nonlinear CAP?3 materisl model and Cook's
sand properties. The nonlinear results show
faster propagation and higher load levels.

This is a result of higher modulus values &%
depth then were estimated by the elastic
unalysis. :

The static stress results for the mesh
(Figure 11) are shown in Figure 14, The
results are similar to the results of the elas-
tic analysis. The overall levels of motion in
the inelastic snalysis are greater than those
of the elastic snalysis. The same base dis~
placement function was used for both. Yielding
in the aenlinear soil ipcreased motions. How-
ever, atientuation of motinn was noted beneath
the structure telative to the free field as
vas noted in the elastic anslysis., Pigure 15
shows the response at step 50, t 2 1.2% seconds.

“Gince the response {s shown for s specific
 tisd aud tne nonlinear charscteristics cause

the tise histories te differ frowm the elautic
analysis, & divect comparison of stress stutes
at that iastant in time {s not possible.
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time 1.25 sec,

The random cyclic loading is a severe
test of the CAP model, having loading and
unloading occurring both spatially in nearby
sections of the mesh and in time with rapid
reversals. These cause sudden changes in the
stiffness of the elements. Often the state of
stress may vary from the teasion cutoff region,
to cap cegion, to envelnpe region in a
relatively small distance or time., This is
particularly true beneath the outer edge of
the structure where high shesrs are present.
Rocking of the structure couses uplift and
.teduced stiffness of the soll. This greatly
exaggorates the accelsration, Pockets of high
acealeration occur. This prohlem can be cor-
rected by reducing the time step and solving
the wave pronagation preblem more exactly.
However, from an engineering point of view,

. this is rot the {ntent of the analysis, and
- the reduced time step would economically pre=-

 clude an aneglysis of long duration. Dimplace-

~'meat and atresses are not significantly
-affected by the acceleration sensitivity to
changes in stiffness. Acceleration spatial
. plota are not accurste since they sce ianflu-

enced by localized high spots, and accelerstion
results should not be expected unless the time
step is reduced to track the wave propagation
rather than stress response. This is clearly.
evident from sstisfactory acceleration perfor= -
mance in the elastic analysis, which did not
have rapid stiffnesa variation.

CONCLUSION
A detailed study has been made evaluating

- s0il material models. A test case of 2 sim-

plified structure on a soil field waa studied.
The analysis shows it is feasible to excite a
soil column using base masses and » force/
scceleration fuaction; this motion can then be
transferred to a large soil mesh through a
displacenent function, Mesh size and time

. step must be selected to ensure adequate pre-

servation of tha input motion. The material
yielding and rapid changes in stiffness cause
localized pockets of high acceleration. Static
and dynamic loadings were satisfactorily
imposed upon the mesh through utilizstion of
static, quasi-static, and dyasmic restarts.




Future work will further develop the con-
cepts presented herein. Additional demonstra-
tion case studies are required to develop a
generalized appreciation for mesh size and
time step parameters. The use of nested sur-
face material lsw concepts to more accurately
track the wave propagation problem wil: be
evaluated. The cumulative strain degradation
effect on soil should be incorporated into the
Prevost soil model to allow the model to track
cyclic pore pressure generation.
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FINITE ELEMENTS FOR INITIAL VALUE PROBLEMS IN DYNAMICS

T+ Es Simkins, Ph.D.

U.S. Army Armament Research and Development Command
Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

The complete dynamic analysis of shock and vibration problems usually requires
the solution of one or more hyperbolic partial differential equations involv-
ing space and time as independent variables. Many times a numerical solution
is attempted by first eliminating the spatial dependency through the substitu-
tion of Ritz type approximations into a variational formulation of the prob-
lem, thus generating a corresponding set of ordinary differential equations in
time, i.e., the Euler-Lagrange equations for the problem. The solution of
these equations can sometimes be tedious owing to the hyperbolic nature of the
problem, 1Instability may result unless the time step is sufficiently small
and for problems involving rapidly changing loads or material properties, the
snallness of the time etep required may lead to unacneptably long computation
time., When true shock conditions are encountered, thers may rsesult no solu-
tion at all, For such problems advantage may be gained by continuing the
var{ational formulation into the time domain, dispensing altogether with the
Euler-Lagrange equations and che need to solve thea. While there exists a
considerable choice of variational principles for eliminating the space
variables (virtual work, winimum potential energy, etc.), the only physically
based variatfional principle extending to the time domain is Hamilton's

- prineiple which, however, is unsuitable for the solution of initial-value
problens in dynamics because of constraints placed on the variational
quantities at the end points of the intarval of tima=integration. A way
around this restriction is to employ instead Hsmilron's Law of Varying Action
which only bacoxes Hamilton's principle if the end point consiraints are
applied, Unlike Hanflton's principle, the Law of Varying Action is not & true
varistional principle in the sense of the calculus of varistions, yet this in
no wvay impedes its application to problems in dynaaics. When plecewise basis
functions (finlte-elements) are eaployed as Ritz-approxiuations in the Law of
Varying Action, howevar, convergence to the proper solution does not follow in
a straightforward mannsr, The difficulties encountered and their logical
resolution leading to a workable finite element {ovmulation for the tiwe
doaain 1s the main toptc of this papsr, A few demonstrations of the utilicy
of finite elements in time are aloo givea, =~ _—

" are others, such as Hanilton's principle which

. INTRODUCTION ,
: ~ do qualify as true varistional principles. Yet

According to Finlayson and Scriven [i} tf

is not variational notation or even the concept .

of a varied path which {s the kay oritarion of &
truy variations)l ‘principle’ dut rather the’

" -axistence of a functional which vhen varied and

sol LA garo, generates the governing equations
and constralnts for a given class of problems,
in this sense, certain fundemental priunctples of
aechanios such ai d'Aleaberi's Principle do not
truly qualify sa varistional principles. That

is v say, theve wechanical -principlea or ‘lavs’

cannot he posed as central probleas of the
-¢aleulus of vaviations. On the othec hand there

it is d'Alemdert’s Principle which foras a basis
for all anslytical mechantes 12] and {t follows,
therefocve, that the vanishing of the first vari-
ation of sowme functional is not a necessary con-
dition for the scalar formulation of any mechan=
ics problam = however elegant or convenient thia
say be, thether a true variational principle or
a wore fundaneatal varfational stetemsnt s used
to obtain a numerical solution to a dynsmics
problen, an fmportast argusent is that well
establishad laus su:h as d'Aleabert’s Principle

or true prineiples such as Haamilton's, are phys~ .

ically hasad.qnd avodd the arbiteariness (nher«




ent 1in general weighted residual methods and
contrived variational principles, Moreover,
only those variational principles which are also
maximum or minimum principles appear to offer
any special advantage for obtaining approximate
solutions — mainly through their ability to
provide bounds on the variational integral.

Even then the system treated must be positive-
definite and the upper and lower bounds are
often too far apart to be of practical value,

In brief, there seems to be little point in con-
triving a variational principle in preference to
a variational law of wechanics despite the more
primitive status of the latter, Indeed the many
solutions to initial value dynamics problems
achieved by C, Bailey [3] by applying the Ritz
method to Hamilton's 'law of varying action’
demonstrate the usefulness of variational
formulations not qualifying as 'principles’.
Thus motivated, the work herein explains the
numerical difficulties encountered in attempting
to generalize Bailey's formulations according to
the method of finite elements.

2ienkiewicz (4] has expressed serious
reservations concerning the use of finite
elamonts in the time domain, Indeed, when the
functions involved are sufficlently smooth, the
number of time steps required to integrate a set
of ordinary differential equations may not de
greal and it may require roughly as many finite
elaments to produce a solution of comparable
accuracy, In view of the increased storage
required, the use of time-finite elements to
golve such systems {83 questionable, There are
many other cases, however, in which conventional
algorithmg for step-by=-step integralion may call
far a vary large numbor of time steps., This is
espacially true when dealing with the
(hyporbolic) equations of structural dynamics
shauld the excitatinn and/or material properties
ehange rapidly in time., A physically bdased
variattional mathod, with its inhaerent stability
and physical erigin, may lower the coaputational
effort consideradbly.

The many selutinng achleved by C, Bailey

wora deneratad by the Ritz method (3] using a
powsr wur{as approximation in which glahally
dofined polyncaials are the basis tunctions,
Ultimately the langth of interval over whieh
solutinng may be generated as well as the datafl
tu be provided {n any subinterval will he
limttad by the degree of polynoaial used as a
bagie, The plifalls of using higher powered
polynomtale are wll documented {6] and

- partlally acesunt far Lhe use of locally
{nlocowive) dofined hasis funetians {finite
-elesent’) to solve probleas ia many branches of
tathesatieal physiecs, The extrsordinary
acenraey and slaplieity of precedure attained by
Bailay, howaver, are not to bo understated.

Apart froa avoiding Lhe problaas vhieh can
arise whan higher poworud polynoaials ave
aaplovad aq bisis funetions, finite elesent
formulatinng have other advantages vhen used te

solve problems in continuum mechanics. Even
though the principal motivation for their use
has been the need to handle complicated boundary
shapes (non-existent in the time domain) time-
finite elements are also well suited to handle
sudden changes in load functions, extending the
interval of solution indefinitely without
restart, and providing great detail to the solu-
tion in any subinterval. Two examples which
exploit the advantages afforded by the finite-
element discretization of time are given in
Section 5.

Since 1977, several investigators have pub-~
lications dealing with the use of finite elements
to modify or replace conventional integration
methods, Hughes and Liu {7]), and Belytschko and
Mullen [8] are notable examples, One also notes
the work of Serbin, Dougalis, and Gunzberger who
have recently begun a computational and theoreti-
cal study of finite element methods for hyperbo-
lic equations [9]. Thus despite the reservations
expressed by Zienkiewicz, the extension of the
finite element method to the solution of tran-
slent field problems is well motivated and was
first reported by Argyris and Sharpf [10}], later
by Fried [11], and most recently by Baruch and
RLff [12,13], ALl of these works attempt to use
Hamilton's principle as a starting point for the
finite element formulation of initial value prob-
lems., As will be pointed out in the following
section, this cannot be accomplished without some
logical inconsistency when bringing the initial
data into the formulation., In the sequel it will
be shown that the use of Hamiiton's 'law', rather
than Hamilton's 'principle’, makes possible the
logical incorporation of the initial conditions
into the variastional formulation.

2, HAMILTON'S PRINCIPLE -
A CONSTRAINED VARIATIONAL PRINCIPLE

The following equation 1is known as the
generalized principle of d'Alembort [14):
N

12‘43‘-15_9-651-0 b Cysane

This squation applies to any system of
N=-particles, the ith particle having a pesition
£y & mentum Py, and subject to a resultant
appliad force !" -

findar the assuaption that the virtual work
of the applied forces is derivable from a scalar

¥, a time {ntegration of equation (1) leadas Lo
Hamtlton's law of varylng actien [15,16]:

12 N t2
8/ Cr=v)dL = | eqrprdry] =0 (2a)
Cog el v Ty :

T 18 the kinetie engrgy of Lhe syitanrr

N L N |
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and V is the potential energy of the forces
impressed on the N-particles. The oexistence of
V makes little difference as far as numerical
calculations are concerned. In the event V does
not exist, aquation (2a) can be written:

19/] - N . t2
[ T(sT+éW)AL - ] myry e éry] = 0 (2b)
ty i=] ~ R 31

The bar signifies that {n general the virtual
work of the applied forces cannot be derived
from any scalar function of the generalized
coordinates, Either of equations (2) can be
used as a basis for a Ritz approximation to a
dynamics problem.

If the r{ are cousirained to take on
specified values at t) and t, then §py(t]) and
dri(ty) vanish in equation (2a) and the result
is Hamilton's principle:

t2
8/ (T-v)dt = 0 (3
t

Since the vanishing of the displacement
variations at the end points is not the only
means by which the partial sum in equation (2a)
may vanish, equation (3) may not always repre-
sent Hamilton's principle in the strict sense,
Should cquation {3) be used as a basis for the
unumerical solution of a dynamica problem without
the requirement that all of the &p; vanish at ¢t
or tz, zero momentum conditions will prevail
instedd as natural boundary conditions on those
displacements whose variations are free. This
aspact of variational principles is covered very
clearly in many references (cf, rof, (17}). An
obgervation to be made here is that equation (3)
corresponds to a system of boundary value prob-
lems = not initial value problems = since the
partial sum can only vanish through boundary
{ondpoint) constraints either natural or
taposed., Thus equation (3) cannot, with coa-
pleta logic, be used .to formulate any system of
initial value problems of dynamizs. The intre-
duetion of {nitial data has in fact always been

. the ohstacle preventing the use of Hamilton's

principle for the variational formulation of
initial value problems (18,19].

Sinee equation (3) 1s a valld physical

" statenent of mechentes only vhen the boundary

constralats are such that the partial sum
vanishes, it is proper to refer to this equatien
48 a 'constrained variational principle' as
opposed to equations (2) which are uneenstrained

- varlational laws of sechanics, suitable for the

applicatton of arbitrary coastralat condittons,
3. GLOBAL, AND PLECRWISE RITZ APPROXINATIONS

Equations (2) and (3) differ oaly in the
presence or absence of boundary temmg, For the
caaa of a single particle (Ne1) having oniy one
dograe of freedom u(t), the Rits procedure whaen

applied to either of equations (2) leads to a
scalar relation of the form:

SUT((R-B)U~F] = 0 (4
whereas for equation (3):

sUT{RU-F] = O (5)
As yet, none of the Uj are specified so that all
of the &Uj are arbitrary quantities. Equations
(4) and (5) result from the Ritz procedure
whereby the displacement function u(t) is
approximated as:

w(t) = al(e)y (6)

The relation (6) applies to the entire interval
of solution when globally defined basis func-
tions are used or to a particular subinterval
thereof when plecewise functions (finite ele=-
ments) are employed. When a global power sucies
approximation is used U 1s a vector of general-
ized coordinates, the first two of which are
identifiable as u(t)) and 4(t]). The 'shapa
function', a(t), in this case {s simply:

aT(t) = [1,e,t2,000,t"] , ty <L <ty (D)

1f plecewise cubic Hermite polynowials are used
instead, the components of U are local values of
u and O defined at the endpoints of a particular
subinterval, and

aT(t) = [213-3c21, n(vd-212+1),
3r2=21, w(vd-1?)) (8)

whera v = t/h, h being the length of the partic-
ular subinterval. Referring first to equatlon
(5), it is noted that ¥ should tend in the limit
to be singular of degeneracy one if the aystem
i3 semi-definite and noasingular far positive-
definite systems., For exanple, the dogeneracy
of & for the simplest semi-definite system
(nli=0) represents the possibility that neither
ult)) or uty) has beon specified, That is, 1f
neiiher &u(ty) or du(ty) vanishes, then mi must
vanish at hoth endpoints as natural boundary
eonditions. Under these conditions u(iL) may

only bde determined to within an arbitrary con-

stant. Thus in equation (5) K, it singular, may
only ba roduced to -a nonsingular matrix by spae-
1fying values for u(ty) and/er u(tz) so that the
variations of one or both of these quantities
vanish, As ue are only interested in inittal
value problems, the vssence of the discussioen
which follews {s not changed if, {t {3 hance-
forth assuaed that u(ty) has deon wpealfied,
This 19 known as a 'geometrie’ or 'laposed’ con-
straint, Becausa Sy & Su(ty) = 0 multiplies
the first row of X in equatien {9), this vou 18
effectively removed from the .orsulation., Since
the rowaining variations arve avhiteary the final.
sot of equations to ba solved 1a thea:



s
e

"
oot

n
I KegUy= B =k, 122,300 (9)
j=2

where Uy = u(ty) is the specified value and n x
n is the dimension of K. Whether these equa-
tions derive from a global power series approxi-
mation or from one based on finite elements, one
may readily verify that as n is increased their
golutions do indeed converge to the exact solu-
tion of the corresponding two point time-
boundary value problem. That is, when u(ts) is

also specified and the corresponding &U quantity
set to zero, equation (9) converges to the
proper solution. Should one wish a solution to
an initial value problem, however, equation (4}
aust be used instead of equation (5), 1In this
case, specifying values for u(t;) and u(ty)
cause U} and §U to vanish thereby deleting the
first two equations of this set, The resulting
system of equations to be solved is thus:

0
123(K13-81J)Uj = Py = (Ki1=B U1=(Ky2-Bg2)U2

1= 3,484,000 (10

In all casas attempted to date, solutiers to
equations (10) have been observed to converge to
the exact solution {f these equations are
derived using a glohal power series approxima-
tion but not if they are formulated by finite
elements, An example of Lhis anomaly wili be
given in the next section, As the only differ-
ence betveen equations (4) and {5) i3 a subtrac-
tion of B in the former, and in as nmuch us con-
vergence ic achisved when equation (4) darives
from a power series approximation, one suspecta
that it is the finite element representstion of
the matriz B which is somehow at fault. It is
therafore of inte¢rast to know in more dotail
Just how the subtraction of ¥ is supposed to
affect the coefficient matriz of the systea.

In contraat to the matrix K, the matrix K-3
must tend to de singular of degenarscy two = no
constraints having been arsumed a priori. Thus
when uft)) is specified and the first row of K-}
is deleted, the rexaining equations scill must
possass one degeneracy in the limit as the
nuaber of basis functions bacomes infinite,

Thus the offect of subtracting B must be to free

“the natural boundary conditlon at tz (inherent

in equation (%)) and to introduce a degeneracy.
This vemaining degeneracy can only ba temoved by
specifylng the value of u(t) at a time other

‘than t) or a value for u, resulting in the

deletton of another tow of K—g.

4o ANOMALOUS BEHAVIOR OF PINITK BLEMENT -
FORNULATIONS '

The degree to which the subtraction of the
matrix § €rom K can both frae the natural bound=
ary conditfon at ty and introduce a degenetacy
diftars vith the type of approximaiion employed,
When global pawer series approximations are used -

. the B satreix is quite tull and the subtraction .

affects many rows of X. When locally defined
Hermite polynomials are used, however, B is very
sparse end in fact contains ouly two non-zero
components. Horeover, one of these appears in
the first row of B which is deleted when u(t))
is specified. 1In this case freeing the natural
boundary condition and introducing a deganeracy
depends on the subtraction from a single compo-
nent of K. Even though both effects may actu-
ally be produced in the limit as the number of
elements becomes infinite, the degree to which
they are approximated for any finite unumber of
elements is evidently insufficient and the solu~-
tions do not converge to the correct result.
This 18 exemplified in Figure 1. The problem
represented is that of a free oscillator of

unit mass and stiffness (a positive-definite
system), subject to the prescribed initial
constraints of zero displacement and unit
velocity. For this case, equation (2a) reads:

T e o . L)
[ (ubu=udu)dt - udu| = 0 Qan
1] 0

or simply,

2
[ (uvu)dudt = 0 * (12)
0

The finite element results of Figure | were
obtained using plecewise cubic Hermite poly-
nomials. (Higher ordered Hermite polynomials
yield similar results,) It is observed that the
solutions tend to diminish froum the oxact solu=
tion, sin(t), as the number of elements is
increased. Using only two finite elements the
finite elament matrix foraulation (equation (4))
for this problem is as followst

Plg. | = Divergent finite alemant solutions to

freo oscillator problea

Whote that ¥q. (127 would also revult froa

- application of the Galerkin piocedurs, implylng.
that the Galerkin method his uome physical
Justiftcation for probleas in dyaamice.
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0 = SUT{K-3]U = [8U) SUy SU3 SU; &Us SuUg) »

k11 kyp kp3 k14 0 o
k21 kg2 k23 k24 ¢ o
k31 k32 k3arkyp kagrkia k13 kg
ka1 k4a kgytkz) kaatkaz k23 kg
0 0 k3 k32 k33 kig
0 0 ka4 k42 k43 K4y
Using expression (8), the element matrix k is
calculated in teras of the elemant length h as:
B e 6 13n 1
ks J' (‘.T-“T)dt - -— e e we w weaw
< g oee ae Sh 35 10
2h
15
- SYMM, -

Since Uy {3 speciried the first rov of X - B is
deleted. As tha subtraction of B only effects
ons row of the reduced system, the oaly way in
. which & degeneracy can ba introduced is for the
next to last row to join the space éefined by
the rovs remaining, Thus rows two throvgh eix
in squation (13) ideally would becoma linearly
dependant, This dependency among rows wust be
quite gencral as specification of any othar of
the YUy must resove it, ' R

One suspects that a simple subcraction of
unity from Ksp in equation (13) way not do the
best jab of introducing a degeneracy or of
fresing the natural boundery coadition at ty =
*, Nne can gain soms idea of lww 'close' this

 subtraction brings the £ifth rew {uco the space
of vows 2,3,4 and 6 by comparing it with ite
projection onto this space, Substlsotiag ®/2
for h, the fifth rov of equation (1)) calculatas
to det ' . .

T (0.0 0.0 «0.96390326 =0.17637194
: ) 0180305097 - «0.970755178)
whersas its projection 1wi - '

{RBSETIBIE-Y <4,3976979E-3 ,974496333 ,
70184380835 0, 112642873 0496178340}

- meE - ewee @ =

0 ~1 00 0O Uy
0 000 O0COC U2
0 000G O U3
- . (13)
0 00O0OCGOC U,
0 0000 1 Us
0 0 00 0O Ug

1tht  9h 6 132 1

- o @ e wwne -

210 70 5h 420 10

wd 13 1 K

105 420 10 140 30

6 13h 1h )

- mew meca » =

5h 35 210 10

2h  h3

- - mmw

15 105

Further calculations show that it the intervel
of solution remains fized and the nuwber of
finite elenants is allowed to increase, closer
agresaent batveen the next to last row vector

and ite projaction is observed but this is not
acconpaniad by a convergence of the sclution
vactnr toward the exaot solution to the problea, -
While the exact resacus for this instability arve.
not known it is appavant that the rate at which -
‘the next to last tow tends to bacoma dependent

is important, 1Tt stands Lo reasoa, tharefore,
that should one fnvoke tha liait condition
without actuully proceeding to the liait, a
aonvargent sequence way redult and {undeod this
proves t3 be the zase. .

Assarting that the fow vactors two through

- six ave Tinaarly dependent allows the E4fth rov

“1inear coabination of .he others.
Clet -

{aquation) of equations (13) to do replaced by a
For exsaple,

Rs « ogRa + ajky o+ Ry + asly  (14)
where Ry denotes the ith vow of § = 8, Aier

. twpostng the second lnttial constraiat, Uy » 1,

equations (13) cen be writtent

SUyRy © U+ SR U+ BUsCagRpragRyartysaghs)

“U+BUghg rUO - (19)



e |
Z it

A

e

R~ m e

Ty
A

Ror i

Since all variations in equation (15) are
arbitrary, there results the following system of
equations for solution:

O=F3 cU=Ry s UmRy*U=Rg *U (16)

Thus the second equation (row) which was origi-
nally deleted through the specification of U,
is brought back into the formulation in place of
the fifth in a logical and consistent manner.
Equations (16) are the same set as would result
from following the procedure of Argyris and
Scharpf. These authors, however, started with
Hantlton's principle which requires that §U) =
§Us = 0. This would delete the first and fifth
equations from the get, Further specification
of Uy ghould then delete the sacond equation as
well, overgpecifying the problem. Argyris and
Scharpf (20] allow this equation to remain with-
out justification. Moreover, no explanation is
given a= to why 8Ug should vanish as Us is never
specified in an initial value problem, All of
these inconsistencies derive from the fact that
Hanilton's principle corresponds only tn bound=
ary value problems - never to {nitial value
problems.

In sumnmary, the work of this section shows
that Hamilton's law of varying action, unlike
Hamilton's principle, is an unconstrained varia-
tional statement peimitting the introduction of
arhitrary constraints including data ordinarily
given for inir{al vulua problems. When place=
wige Hormits cubic polynomials are used as a
baiis for a finite elemanr formulation, the
singular state of the resulting coafficient
matrix in the limit justifies retentinn of the
sacond equation of the systes in prefurence to
the noxt to last when typical initial valuos for

displacement and velocity are specified., Fol-~
lowing this procedure, convergent solutions are
then obtained for the problem of the free oscil-
lator considered in this section. These results
are presented in Table ! for formulations based
on one, two, and six finite elements,

Note that the replacement of the fifth row
of [K-B] by a linear combination of rows two,
three, four, and six in accordance with equation
£14) does not have to be carried out in practice
when seeking the solution to the homogeneous
problem (F = () as this procedure 1s entirely
equivalent to replacing the fifth equation by
the second. This equivalence, in general, does
not apply to the nonhomogenecus problem (F #
0)however, since F; would then replace Fs. In
general, Fg # ayF3 + a3F3 + a4F; + agFg except
when the original load function f(t) is a
constant. Nevertheless, the replacement of the
nest to last equation by the 2nd will lead to
convergent solutions in many cases. In some
very important cases however, such as when Fy is
zero and Fp.) is not, the procedure will fail.
(For example f£(t) might be concentrated at an
end point of the time interval,) Thus Lo bhe
perfectly consistent with equattons (2) the
substitution of the second row for the next to
last should be confined to the matrix (K-B], In
this case the aj must he determined and will
figure in the final solution. Since Lhe uy are
casily Jetermined from the solution vecter to
the homogeneoue problem vhese quantities are
readily availadle. The proper substitution for
the fifeh equation of the nonhomogeneous
counterpart of equation (13) ean te shown to he

R2 * U = (Ps=ayF3~a4Fs=g=¥e) /a2
1a place of the original equation Bs « U » ¥s.

TARLE 1. SOLUTIONS TO PRER OSCILLATOR PROBLEM (DISPLAOBHBNY/VELOCITY)

0€¢ €
T * Exact
‘__gtln One Elewent Tuo Eloments 8ix Elemonta ~-Jolutton
0 0.0 : 0.0% 0.0% 0.0
1.0 B WY 1.08 feth
i ' ' © 0,49978003 0.5
0.86602547 0486602841
2 086364452 0.R660254}
0,5500002% 0.5
oy 0.97817398 . 0,999%6036. 1.0
2.02985945844 - 7 4,45729578=7 0.0
& 0H.86564496 0.86602541
] - 0,49974082) 0.9 -
=0.86602502 0.86602541
[ T H,0166099781 31,9865 105K =4 RIRLFFAT Y] 0.0
=1 0079414 ] 00000946 - =0,99999999 7 =1.0 L
"T‘&;;& -;z:i-':a“. s muwaua DR W R 0N o w
T

o Rt ) ‘ii‘t{ﬁ"l;:&.&. ¥
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5. APPLICATIONS
Example 1. Linear Oscillator Subjected to
Discontinuous Forces

A linear oscillator of unit mass and
stiffness is subjected to a force £(t).
cases are considered:

Two

(a) £(t) = H(t-1/2)
(b) £(t) = 6(t-0.4)

H and E are the Heaviside and Dirac functions
respectively and for either of these cases
equation (2) reads:

tz . o . tz
[ “{udu + (£(e)=u)Suldt -~ udu | =0
t] t

For case (a) four finite elements of equal
length are used to approximate u(t) over the
solution interval (0,2), The element polynowial
shape function is Hermite cubic and an elament
length of one half takes advantage of the
specific shape of the forcing function.
compares the calculated displacements and
velocities with those comaputed from the axact
solution,

Table 2

SOLUTION TO u + u = §(t=0.4)

TABLE 3.
0<t <}
Computed Exact

t Displacement Displacement
0.0 0,0% 0.0

0.1 0,1* 0.099833416
0.2 0.199001664 0.19866933
0.3 0.296016622 0.295520213
0.4 0,390076343 0.38941834
0.5 0.58007539 0.57925896
0.6 0,76428335 0.76331182
0.7 0.94086118 J3.93973791
0.8 1.10804607 1.10677443
0.9 1,26416892 1.26275246
1.0 1,40767112 1.40611348

#*Inposed values.

Exmple 2.
Mass

Response of & Beam to 8 Moving

A concentrated mass is assused to move at
constant velocity v along the length of a
uniforn Euler bean, simply supported at each of
its ends and having zero displacement and

velocity at t = 0,

uritten (21}:

[

Under suitable definitinns
for k and m, the rcprcsantativc equations nay be

TABLE 2, SOLUTION T0 u + u = H(t=1/2)
0 <yt <20
T Computed v Exact
t Displacenent Velocity Displacesont Velocity |

0.0 0.0 1.0 00 10
0.3 0.47932149 - 0.87708716 0.47942535 0.877382%65
1.0 0.96376936  1.0199163 0,96388844 1,0197278%

" 148 1,45700368 ~  0.91238744 - 1,45719267 0,91220819
2.0 1.83836447 0.58035616 1,83856024 0.38134814

Inposed values.

In case (b) a discontinuity in velecity can
be expected in tha solution. As the use of
- aubie shape functinng enforces continuity of
valoaity throughout, a better solution aight be
- expacted when linear shape functions ace
. enployed. Table 3 vompares the oxact solution
- - on the intéeval {0,1) with thet obtained using
- ten guch elenents of equal leagih. -

. The twn problens considered in thia exaxple
‘demonstrate the wmanner in vhich the type of
elemeat and tts points of dttacheent (f.e., the

- Yaodes' or *grid points') say da varidd to suit

: ep&ct!ted transloat ovcutu. o .

.'yiv +ky + l(x.c.) =0
 9€0,8) = y*(0, u . yu.t) - y"u.c)

. gtx,0) « 7tx,0) = 0 s

“fhe function f(x,t) coasists of & sua ot
xnarttal tcrﬂs: .

) - u(y + zvy' g vly )G(Ht) (m

"uhere g denotes the gravitational constant and T

19 the Dirac Etunction. This problea is particu-
larly {nteresting ia that tha conventional use

- of plecawise cubic shape functions to disoratice
- the spaca variable only, fatroduces forces which
 are discontinusus funations of Cime fnto the

T

< s N e a o e

rooultiuu-erdtu»ryrd;ttcrcuttul equationy,
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These discontinuities are assocliated with the
bean curvature load term appearing in the
expression (19)., Since the pilecewise cubic
polynomials are discontinuous in the second
derivative at the element attachments, the temm
mvly"8{x=vt) - when multiplied by the shape
function a(x) and integrated over the element
length - “will produce functions of time which
are discontimuous whenever the moving mass
arrives at any point of attachment. Clearly
these discontinuities have nothing to do with
the physics of the problem and are certain to
invite trouble when one attempts to numerically
integrate the time dependent equations via
established algoririms, ([t is possible, of
course, to use shape tunctions of higher degree
to discretize the space variable thus eliminat~
ing the disconiinuities at Lhe onset but this is
hardly consistent with the finite element method
which should permit the use of even linear shape
functions if need bhe, One is tempted to somehow
*smooth' these discontinuities, yet this should
not bhe done in a purely arbitrary fashion.
Integrating the effecta of these forces through-
out the time domain through the use of
Hamilton's law of varying action provides a
consistent way to handle this problem.

While it {3 possible to handle the space
and time finite element discretizations in one
operation, the amount of computation and
computer programming tend to become inordinately
large, Moveover, there exist any numbar of
finite element codss (e.g. NASTRAN) which can
quickly accomplish much of the spicse
discretization, It seens more efficieat,

thavefore, to apply the finite element mothod in .

two steps, by first discretizing the space

variable and thern applying Hamilton's law to LM_

requlting aystem of ordinary differcntial -
equations in Lime, For the case at hand, the
differential oquations governing the motien of

© the 1th bean element Lurn out to bl

» BT
L]

- (p +oc)du + ucgu +

. oy

(g +meyu+ neﬁtvt')- 0

p and q are preportional to the usual mass and

Stiffness matrices for baan elesents and have

heen evaluated many times in the lltevature.
Heve all of the beas elements are of the same

 length &, and the dhplaemm. within the (th
~ element (s {nterpolated from yi(t), a vactor of
.oqd point displaceseats and valocittes, L.,

yix,e) « atighul(e)
0 gle SN ¢ 1))

uhere L30K) * w/i s(1=1), & md(umﬂwl
eleweut ecordinace.

The ¢ watrices in equations (20) corvespond
to Lraasveise, Corlolis, end canteifugal .

. acealorations vespeetively and are dofined for
the 1LH olemunt av fotlows:.

e g(ﬁ*) gT(Ei)lx.vt

ez = 2va(E)a T [ ymye (22)

-

cy = vza( £1)8"T(€1) Ix-vt

It is noted that ¢3 will be discontinuous a g
= 0 and £l = 1. The function @ takes on the
value of m only when the concentrated mass liev
within the ith element, otherwise a is zero.

The element equations (20) are combined in
the usual way to form N uquations of motion for
the combinzd structure, Symbolically:

.

M(OU + C(OU + R(OU = KO (23)

Each of the matrices in equatior (23) can be
viewed as a conventional matrix of consiant
coefficients plus a time variant set of
componente which are active in a band along its
main diagonal as the moving mass traverses the
beanm in time. For this systea of equations
Hanilton's law of varying action con be written:

N N lz . . . [
I {J ~teugmgguy + 8Ug1CMy9=CegdUy=ReqUy +
ie] ju] ¢

’ « B2
Pillde - sugMgyUyl P = 0 (24)
ty

It is interesting to obhaarve the accuracy
of solution which can be obtained fros equaticn
£24) using only two finite =liments in space and -
tvo 4in time, A fuimulation using two elements
in space results in a system of Ned ordinary
differential equations in time once the geomat-

‘ric support constraints have bsen applied, A

tvo eleaent formulation of these four equations
for the time domain, followed by the application -

.of all initial constraints !n the sanner summar-

ized in Section 4, gives & final system of six-~
tesn linesr algebralc equations -for solution.
Figure 2 compaves ihis solution with tha experi-
me4tal results of Ayre, Jacodsen, and Hsu [22)]
an! a eonventional Pinite element solution using -
three elemants in the space domatin followed by a

“timg~integration of the equations (28) by -
© Vamming's predictor=corvector algoritham {23},
© the mase velocity in this case 1s v = v#/2,

whare v 18 the lovest veloeity to cause reso=
nance when the load 1s & woving veight osly snd

“the wagnitude. aseigned to the moving wass i 288

of the total mass of the beas. (Other pavem=
etric values are the same as those in reference

C - 122).)  The displacesants have bheen norwalized

with respect to the maviwve deflection produced
Af the vetght wiv applied statically st midspan
and. L 4s the total besa lengih, In surucuhr
one naotes that the conveationdl solutien

_obtatoed vie three fintce elements in space

only, produces non-physicsl discontinuities fn
the slope of the solution cuvve at vt/L » 1/3,
273, (The contisuous data for generating this
curve 1s odrained by Laterpolating the solution:
0 equation (23) using equation (2i).) These
disecontiouities cause graatly facressad cowpu~ .
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tztional effort for coanventional integration
algorithus but not when finite elements in space
and time are employed., Improved agreement with
the experimental results is also observed.
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Fig. 2 = Displacemenc of deam a% location of
moving mass
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STRUCTURAL DYNAMICS

A Procedure for Designing Overdamped Lumped Parameter Systems

Daniel J, Inman
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, NY 14260

Albert N, Andry, Jr.
Locheed California Company
Burbank, Califoruia 91520

The concept of overdamping common to a single degree of freedom
damped linecr system is extonded to multidegree of freedom damped linear

systoms,

Inequalities involviag the muss, dawping and stiffness

paraneters are derived to form a system with s fra. response which is
overdamped in each mode. A goenersl method for designing syatems to be
overdanped in each mode is indicated, The method is applied to a four
degree of fresdom model of s Dazrieus wind turbine and & design solution

for overdamping is presented.
Introduction

It is often desired to limit ths
oscillation in mechanical systems by using the
sffects of viscous damping. In a linear one
degses of freedom spring, mass and dashpot
srzacgement, the sslection of ths proper valnes
of mass stiffness and damping constants to
produce an overdamped or coriticully damped
syntem is trivial. The solution of a constsnt
coefficient second ordar ordinary differential
squation shows that if ¢ 2 2 mk, vhere m, ¢ and
X are the mase, damping and stiffaess
cosfficients zespectively, then the system will
aot oscillate, The work presented hsre yields
simiiar inequalities for monmoscillation of
aultiple degree of freedom systems.

The systems considersd here arc those that
can be modeled by the matri:z dltlorontinx
squation

Mx(t) + CE(L) + Kalt) » 0 ()

where x(t) is an n~dimoensions) vector of
displecements and M, C und K are uxn symunetsic
matrices containing the physioal parameters of
sass, damping and aciffnoss constants, Xt is
further sssumed that N and X are positive

~definite and that C is at least poaitive

semidafinite. The dosign procedure presented
hoxs takes sdvantage of novwly doerived matriz
conditions [1] to gemerats mom=limear algedraje
inegualities in the physicsl parameters of the
system, When the perameters sre choses to
satisfy these inequalities, the sesuliing

xwh

trassient response will be overdamped io each
mode, The inequalities sre stated directly in
teres of the mass, damping and stiffness
constants of the syatem.

The exaot relations for overdamping asrs
derived fox a two degree of freedom system, Once
the design criterion is satisfind the results
are ussd to calgulate the eigenvaluea of the
systen to illusteate tbat the designed system s
in faot overdamped in each mode, The design of
s specitic four degree of freedom wmodel of a
drivetzain is also given to iilustrate ths prob-

_lems emoountered im moge practical desiga situa~

tions, The gensralization (o a degrees of
Tresdon is abvio\s feom thuao exangles. .

llﬁil;ﬂﬁlﬂ

In [1) 4t is shown that if, iz additioa to
the restriotions listed adbove, the -;zcieoc N C
and K are such that the ustriz

WM eila au~b/3 gyeiiay1i3

As posdtive defimite thea all ot zho sigenvaines
of (1) will de aegative real sunbezs and ench
mods of (1) will ds overdamped., Simce M is
syametrio and positive defimite, it IO‘,,IDOI .
unique ;oo‘,‘yo definite squire root, N with
taverae {714, Usiag the tzansformstion

-!II

cquatton (1) is itedused to

YAy e By s 0 ‘ , a

4
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vhere A = N 12 Y2 yng = WM 2%y 12 e
condition for overdamping ﬁ sch mode for (2)
becomes that the matrix A-2B nu:t be positive
definite, Since the square root of -2 matrix is,
in general, harder to compute than the square of

s matrix, it is tempting to use the matrix A2-4B .

in design work., Fortunately, it has been shown
{3l th'f/if A3-4B is positive definite, thon:so
is A-2B Thus, requiring the matrix A3~4B to

be positive definite insures that each mode of-
(2) will be decaying non—oscillating: 7~

{overdamped) function of time,

If it is desired to make the solution of
(2) overdamped in each mode for arbitrary ini-
tial conditions, thexr it suffices to choose the

phyzicsl constants ny, ¢; and k; so that A‘-4B_

is positive definite,

% Degres of Freedom

To illustrate the above ideas consider the

two mass arrangement in Fig, 1. The appropriate

mutrices for the equations of motion are:

B 0 oyba -0
N = 1. } C = 1772 2
0 .z "cz 02

kitk, -k
i K = [ 1772 2}

kK

33 A\ Ay
'#

=]

f
"%

o8

Figs 1 Twa degres of fresdom tystem,

. The matrix W32 4y,

1 [:llli]' 0
' o

Demoting the i»j“ 9lement of a goneric matriz A
by -‘tu aad foimisg the matriz [ 3-4B3 yields

(o 097)' oot X,k
7O PP R M
: b "xf‘z |
-o 6.~ [ 7% 2 4%
(hrea, o —A2 2’ 2 2
' LY ‘z“_‘"z
- ““'ma‘

" .partioular, s real 2x2 matrix D
. definite if and only if

“Cp2 0,2 k
2 2 2
(A’ 43)22 = ;-2-— + am, -4 '—“ .

" It is desired to choé:e B, © ‘and k; so that

the matrix A3~4B is positive definite, A
necessary -and sufficient condition for a matrix
D to be positive definite is for each of its
leading principal minors to be pusitivc. In
is positive

c By 20
and

- DyPyg ~ ”12"21 > 0.
 _App1y1n. the:e inoqn.lities to (A‘°4B) yield:

foy*a,) 842 TRtk :
LA T 2 @
® *1"2 i S
l-“x"z)’ N M e
L=’ mm, w |
(ey*0,)? ¢ k
{9y ‘z . 2’ 42,
B b L S

A NS } :
‘ - - ewe—
['x'z Y2 '} b ]

If the parsmeters By 0y asd k, sre nov chosen
to satiafy (3) (aleng with the physical
constraints that m,, 0y and k‘ are all positive)
thes (1) will be overdamped in each mode and
will mot oscillate when pertusded from
equilibrium, Ju total the iz parameters muat
satisfy eight inequalities (3,6},

The approsch takea here was to simply fiz
the values of m, and t‘ ané choose values of oy
to satisfy (3). "For example the valuss :

i Tl i Rl
l‘,‘ ‘3.3
lx-l kz‘z

satisfy (8). Ia order to verify that this aet

of values iwnpliss ovesdamping, vs solve the .

eigonvalve problem using these paramesters. mu

yiaids the charasteristio polysomial '
At 4 LAY ¢ 240D + 130 42 =,

with eigenvaluss

A = =03662

Ay = =0.8323
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“enhlnc ing the

Ag = -1.2941
Ay =-10.9074

Thus, the design procedure yields an overdamped

response, since each eigenvalue is a negative

resl number.

Design Applicatio

The process desoribed here may be useful in
survivability of ocextain
structures by designing them to have an
overdamped free response. Iz order to
illustrate this in s design context, we consider
the drive train of a Darrious wind turbine, A
rodel, excluding damping, of the DOE/Sandia, 60
KW, vertical axis wind turbine and drive train
is provided by Rueter [7-8] and is reproduced
boere with the addition of damping (see Figure
2}, The numorical values for inertia and

stiffoess are listed in the appendix along with-

tho definition of cach parameter,

In order to produce a C matrix which would
sllov inequalities similar to (3) to be

- formulated, some mechanism must bs available for

adding damping to the system, For non-
rotations] systems this may be sccomplished by
use of shock absorbers or linear actuators, For
rotaticnsl systems, devices such ss Houdaille
dampers may be uasful, Figure 2 indicates the
addition of such dampers to au existing system
(io.u 0;:02003.95 and °6).

Iy, 0 0o o

0
0 6 Jy O
3

-.: 3

] -0 0 0
Ce ~01 6ytoy =0y 0
0 -89 ©gt03 03
Lo 0 ¢y ogtd,
kg -k 0 0
- X k;tky “ky 0
0 -k, kytkg e LI
Y 0 e P ky

where the J. are the various values of inertia,
the ¢, are &%dod damnping constants. d, is the
damping constant due to the induction gemerator,
ky and ky are shaft stiffness constants and k
and k4 are stiffness constants associated wit
the trsnsmission and pulley system, The
transmission has & gesr ratio 6, aod the timing
belt has 2 zatio of By, PForsing the matrix
A3~4B yields:

(ogtegh® &F K
(A‘-‘B) B e mmvren o -
1Ly W, 4

oz(cxﬂs) °2(°1*°2+°6)
WIE LT,

(A3-4B) 12'“"‘43’21" -

“‘"43)&3 - “"4‘)31 -

1T,
(“"‘8)1‘ - (A.-48)‘1 =0
oad (o ve,t0.)? c,t k +k
i ! 275 L)




°2(°1+°2) °2(°2+°3) ky
(A2-4B) = ~ - +4
AR XN 1,
'(A""‘B)az
(A3-4B), = (A3~4B) °2°3
4Bl a4 e T TTT07/—
_ I35,
3
(R3—4B) g g= —2 4 e A MO i I

; 03(02+o3) -03(93-+d4)" . ‘nlnzx4
T3 My I T, T
(A3-4B) .4

{A3-4B) 3 4.

S B e —revr—— ——
A 43)“ 5, + T 4‘74 .

The addition of 91s 8oy 0gs Of sand o is
nececsary to make Al- positive definite.
Requicing the four leading principal minops of
the 4x4 matrix A3-4B to be positive., yields four
inequalities in the inestis, damping and
stiffness parameters, Using the values from [7]
and [8] for J, and k, (listed in the appendix)
and chaosing %hc o %o satisfy the inequalities
yields:

oy = 12.0000210¢ N-u soo/rsd
e ™ 5.8653x104 " L4
o3 * 1,4700x103 " "
dy = 3,5300210% ] '
og = 18.0000z10¢ ¢+ 4
og = 7.1347x10¢ " '

a5 ono possible solutior for the added danping

constants,

The characteristic polymomis! for this
- system s

2.0243972107% A¢ + 9,003867x207 A7 4 1,36778 A0
+ 83.24338 0041.973763x10% p¢ |
+ 188542392104 A3 + 25037642008 12
+8.958851210% A + 3,108979 = 0,

' which has roots:

L‘ - -.132. lz - -lsa‘}

ka r =334, )o‘ med6) )

hg = ~1.72x108, de »~1.032103,
A, - "za‘?‘l_o“ l. e ~3,613304.
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Conclugion

A mothod for elimiaating oscillation in n-
degree of freedon lumpsd parameter systems by
inoreasing the amount of viscous damping in the
systom has been presented. Examples of two and
four degree of freedom systems indicate the
complexity of the process snd its level of
applicability.

Another method available to produce total
overdamping is given in [}] for two degree of
freedom systems, Unfoztunately to extend the
process in [2] to n-degrees of freedom requires
a closed form solution of polynomials of degree
(a~1), However, the method here requires only
the numerical solution of non-linear equalities.
Also, foxr the two degree of freedom case, the
metliod presented in [Z] allows oanly the
parameters o, snd o, to be adjusted. As an
alternative, lthe_ mothod presented here allows
all of the parsmeters %y © and k:l to be
adjusted. Thus it scems tEat the method
presentesd here may be nors computationally
useful in desiga wozk.
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‘f Appendix Parsmeter values of the DOE/SANDIA
4 ¥WIND TURBINE (values taken from [7]) for the case
b

K of tip speed ratio of 2 and turbine rotationsl
k speed of 50.6 RPX

% J 1-1’2-1/2 of turbine motor inertis = 1.65x104 N~
i sec3-m (1.46x10f 1b-seod-in)

<

t

4 J; = transmission inertia = 2.43x10% N-seci~in
X (2.15x10% 1b-sec3-in)

1

)

4 J, = gonmerator inertia = 3,06 N-seo?-in (27.1

1b~sec3-in)

:: a; = transmission gear ratio = 35.6

i‘\ 1800

:; n, = pulley gear ratio = m = 999

13

‘i‘

{ k; = rotor tower stiffness = 1,65210¢ N-m/rad
‘i (1.46x108 lb-in/nd)

y k, = tbhaft stiffaess = 2.69x10° N-a/rad
Y (2.39x10¢ 1b~in/rad)

R K; = trassmission shaft stiffness = 1,41x10%
* N-a/zad (1.35x10¢ 1b~in/rad)

. Jy = senerator shaft stiffness = 2,10x10% a~
. a/zad (1,86x10¢ 1b=in/red)

¢

X b M |

i ky = Smeap - 263:10¢ Nea/red (2.393100 1b-
) kyvay Ky ia/rad)

"

k
k, = = 3.07210%a~n/zad (1.8321041b~ia/2ad)
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On the Optimal Location of vibration Supports

B. P. Wang, W. D. Pilkey
University of Virginia
Charlottesville, Virginia 22901

The problem of optimal positioning of vibration supports to raise
the fundamental natural frequency of a system is studied. It is proposed
that possible locations of the supports can be compared by studying the
corresponding antiresonant frequencies, It is contended that a near
optimal location is achieved by locating the supports such that the
corresponding lowest antiresonant frequency is a maximum and a criterjon
is proposed. Numerical examples are used to illustrate this criterion.

INTRODUCTION

Intermediate supports axe often ‘ntroduced
in engineering structures to increase the
resonant frequencies of the system as well as to
support weights. These supports, when realized
by actual etructural components, are slastic
suppoxts. Thus, the problem of desighing
vibration supports to raise the fundamental
frequency involves finding both the location and
the required stiffness of the supports.

In an earlier paper, Besler and Curreri (1)
studied the design of wibration supports for
piping systems, They uted the transformatrix
wathod to study a spring supported cantilevex
beax and a spring suppoxted L bend. They found
‘the optimum spring location, i.e,.,the most
-effective location to put a spring to increase
the fundamental frequency, from numericil
sxperimentation, Thay concluded that a
. nearoptimal position for a flexible spring is at

a node of the second mode. TYor a rigid support

this would be the optimal location.

In the present paper, a uriterion for
selecting the optimal springlocations will ba
derived. This criterion can &lso be used to

“compare the relative effectiveness of sets of
proposed support lovations. .

ror a sultiple=degree-of-freedon. undamped
systen with a spring xate of % huoduud at dot
J, the frequancy equation is8 -

7;0}”(@) -_0 | - '(1)‘_

LG £ e L g 4O L B N I 9 AT R S gt S L L RO

‘utilized, and s,

wvhere Ru(u) is the recsptance of dof J.
Equation (1) can ds derived using the zeceptance
mathod [2). Alternatively, it can be found by
considering the addition of a spring to a system

-a8 & local modification {3,4,8). The

recaptance R;j(w) can be expressed in modal

summsation form as

n ﬁz
() = L, —— (2)
33 Bl g Wi

vhere v, is the natural frequency of the ith

- mode of the unsupported system, (p.) is the

corresponding eigenvector, Pye is the Jth
‘conponant of (O'b n ie_the number of modes

= (P} (m]{o,) 18 the
generalined mass of the tth mode. Thus, for
any given spring rate k, Eq. (1) along with lq.
(2) can be used to solve for the new
frequancies w. The natural frequencies of the
supported system incrsase as the spring rats
increases. In the limit, as k approaches
infinity, 4i.e., as the suppoxt becowes ideally
xigid, the tuquw mum m

5g(w) = 0 ' BT Y

ggmu m lovue W that satisties x4, (3)
. u the lowest antiresonant

mquncy of aoc o, mat is, a9 15 the

‘highest fundamental fregquancy achievable when

the support at dof J becomss rigid. It follows
fxom the eigenvalue separation property (8),
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that a“” < ("2' where wz is +the second natural

frequency of the ungupported system. Thus, by
choosing dof J for a rigid support as a node in
the second mode of the unsupported system, we

have a'?) . w,» Which is the maximm cbtainable

fundamental frequency. This result has
been known for some time (1),

Now consider the case of introducing
springs at dof "1"’2""’.' Pollowing the

procedure of Ref, (5]}, the frequency equation
of the supported system is given by

det([1] + [RI[aK]) = O (4)

where {1} is an sxs identity matrix

(R} is the receptance matrix associated
with the dof 9y d,, ...a... i.e.,

2
R,.=R (5)
7 Ty,
Akl
A Akz
{&K] = . » an sxs
: ok diagonal
s matrix

Akj is the spi'ing rate of the support at dof 3.

In the limiting case when all Akj - w, 2q. (4)
becones

aet(f) = 0 (6)

{9}

2at a ® be the lovest root of Xq. (6). Then

the optimal rigid support locations will ba where
(N

a % s a maxisum, We are now in a position

to propose a criterion for near optimal flexibl

. support locations. .

JAXINUN ANTIRESOMANT FREQUINCY CRITERION (MAFC)

For givan sets of support locations. a near
ootimal set of iocations s where the corresponding
iowes! antiresonant frequency is & maximum,

e will call thie criterion the Naximum
Antiresonant Prequency Criterioa (MAFC)H.
fhis criterion leads to the two optimal

i locations for rigid supports and to near optimal

ones for flemxible supports; the stiffer the
apring rates. the better the eriterion. %o find
the antiresonant frequency, one Can either solve
an eigerivalue problem of order (n=-g) or solve
the nonlinear Rq. (&), :

NUMERICAL EXAMPLES

To illustrate the basic contention of the
MAPC criterion, consider the simply supported
beam of Pig. 1. The fundamental frequency of
this beam is 15.71 Hz, It is desired to
introduce two intermediate supports to increase
the fundamental natural frequencyto above 25 Hz,
Por this example it is practical to restrict the
support locations to two poasible sets of
positions, sayA (xl = 1L, xz = 0.5L) and B (xl

= 0,34L, X, = 0.67L).

| L
C

b X3 |

L= 2,5m (100 in,)
E = 69 GPa (107 pai)
1
p = 8748.73 52, (0,01 1R=82¢,
m in

-6

1= a.262020°° w* (10 inh)

Pig. 1 A simply supported beam
Por this case with two supports. ve have

Axl 0
(K] = (7
0 oK,
and
: A LY ﬁlz. ,
Ry = RNTS
QZI QEZ

It is convenient to calculate ths elewants

I” with a sodal summation. Thus.

Ry = Rexpxy)

NN ' -
mahi o ) - e o




..,“
ol

v
PO
P i

where, for a simply supported beam,

inx

Py(xy) = 8in Ty

G, = 1/2 pL

. ida2) EL
[} L2 "’p

W
In the numerical calculation n = 20 is used, or,
in other words. 20 modes are used to avaluate
the receptances ir Eq. (9), The frequency
determinant of Eq. (7) gives

£ {A)

1 " fundamental natural freqency for rigid

supports at X = 0.1L, x, = 0.5,
£ = 70.9 Hz

£ (8)

1 - fundamental natural frequency for rigid

supports at xl = 0,340, xz = Q.67L
= 180.1 He

Since flw) » £ ‘M. we conclude that the location

pair B is wore effective than location pair A in
raising the fundamental frequency of the systenm.

To check the above proposition. we will
compute the fundamental frequencies of the
spring supported hean for the special case of
equal spring rates. The results are susmarized
in Table ). Alternatively, we can cowpute the
requirad (equal) spring rates for both springs
for given fundamental frequencies. The results
are summaxized in Table 2. We observe that to
raise the fundamental frsquency lbovo‘z! Hs,
springs with rates of about 1.23 x 10 N/m (7000

1b/in) are needead at location x‘ = 0,1L and X"

© 0.8L, while less stiff springs with rates of

0.08 x 10° N/m (5000 1b/in) are needad if they

are located at x - 0.34L, -'z = 0,67L.

As 2 second numerical example. consider the

" olamped-supported beam of Fig. 2 with an

intermediate Bpring support. The fundamental
trequency of this beam is plotted in Pig. d as & .
function of suppert spring locations and rates.
Prom KAFC. & near optimal location is determined

to be x = 27,4 in,. the point of maximum

antiresonant fraquency. This is the optinal
location for a rigid support. The optima;
support diverges fyom x = 27.0 as the stiffness
ot the support is decreased, Housver. note that

_the system with a spring wupport located at x =
L %7.0 zesults in a system ylmast as good as the

system vith & spring located at the trus optimal

‘Yocation.

CONCLUSTON

In suseaxy, a siwple criterion has been

~aerived that will allov a designer to dutermine

4
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the relative effectiveness of possible sets of
lorations for placing vibration supports. This
will narrow the design problem to that of
determining the required stiffness to achieve a
desired fundamental natural frequency.

TABLE 1
Natural Prequencies for Simply Supported Beam
with Two Fqual Intermediate Springs

Spring Pundamental Natural Prequency
Stiffness of the Supported System (Hz)
N/m (1b/in.) tl = 0.1L, xl. = 0,34L
xz = 0,.5L tz = 0.67L
17513 ¢100) 15,88 18,95
87565 {500) 16.67 16.08
175130 (000} 17.38 17.96
350268 (2000} 16.90 20.00
525390 (3000) 20.30 2.0
700520 ( 4000) 21.61 23,48
875650 (5000) 22.82 25,08
1751300 (10.000) 28.07 31.72
- 76.9 180.1
TABLE 2

Required Spring Rate to Achisve Presoxibed
Natural Prequency

Pundamental Required Spxing Stiffness

Natural : © tAb/4in) for Springs at

Prequency (ilz) 'l = 0.1L, :a = 0,5L
N/m {1b/in)

.16 " 29238 {166.,98)

17 . . 133408 £762.91)Y

19 - 344432 1398.486)

19 3230 (2089.24)

20 486938 (2780.42)

] 1214300 (6934,07)

30 2128640 €13137.50)

Pundamental - Raquired Bpring stiffness
_Natural ¢1b/4n) for Springs at
~ Prequancy (Hz) L 0.34L, x = 0,670

: N/ hv/iny

16 .- 23320.8 (122.17)

17 . 949982, (953.09)

18 277138 - {1011.4%)
b1 ] . © 262047 (1498.3)

20 - 381610 . - {i007.71Y

as . [ (1] H] {4964.70)

£0594,61)

30 1308170
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SR ABSTRACT
. ,“
- ﬁﬁ; To develop design guidance for foundations of shipboard equipment DITNSRDC
:‘.'tl conducted a series of dynamic tests un parametrically varied pinned columns,
_a,f Tests showed that incipient buckling can occur at loads as low as 70 percent
o of the Buler buckling load. Applied dynamic loads of 50 percent of the Buler
; ‘ load do not appear to cause buckling when eccentricity is low. The tests
‘.'t" also showed that columns can carry lcads that are multiplen of the Euler
sg; load provided the load duration is short compared to the fundamenzal bending
;e,' period of the cclunns; otherwise the columns collapse. Columns subjected
%’Q to dymimic compressive loads equul to the Buler load and of a duration
fh equal to the period of the column are in imainent danger of collapse.
: l'!gg',. . ’
o INTRODUCTION
i*? : ‘ nmnsmm ANALYSIS
g Ar underwater gxplosion (UNDEX) noar a -
oy ship can induce dynamic compression loads in - - To help desiga colusns for dmtc bm
o, - foundatlons of {nternal equipment wounted in - f““‘““:‘ '“: ‘: “‘1’::"“' :’:‘ 'i“"] s
. . the ship, This loading can trigger in the com~ 1;';“";“‘ shalyeie “'1 : :: " :;‘;“’ R
. pression membars a collapse mechanism called E ; a0 ‘“:: ”:‘“u:' ‘“:d" 1 f ; r
e . dynamic buckling, As used {n this text; dyssmtc “‘? 8 1 hav °:; :'“; :° _';; fraat
Ll - buekling {s tha collapae history of & columa : ':“‘:“‘“ i:’ :“ 08, hav “g :f":" Sh:nh e
o " that bends in its fundamentsl mode. The expec~ 8% 1t6 midpoint, uas conceived in.whic ne
o - ted fncreased in use of high strangth steel . °"; ead "‘: ""“"“:"“"::':““‘ and the
A ~(esge HY=130) in the structures of Navy ships . ot :: ":: “: ‘;’ ': “ :‘: o @ :::: o
N " ¢an lead to & reduction of structural sections :"ﬂ“ y;, feiedde to that show.
. _ over that if HY-80 or “3 steel were used, - .~ A0 Figure L. _
o4 This can occusr vhen yleld stress governsa -~
oy . design cather than a critical buckling stress, m:,:;':‘::‘; *::‘"‘:“ :’; b":“ég ::'
g . The reduced section may, in the case of colusns, ~ T'% ": the losding £ eh“:‘ Sdoaint & tleen.
z,jt‘ ‘fncraass thedr susceptidility to buckle dynsai= - l“ e u: M“‘ Eriees . f”ha : e
¥ ~ cally from the sffects of an undervater éhock tlon .y, und a characteristic of the column's
) . 1““" oh s ‘M’. bent shapa;, either the eccentiloity yh o
f_z;} its vadius of curvature.. g:m varia u for - ..
K he columd include length &, radius of :
s . Dav!d W. Taylor Naval Ship R&D Center .
Q. . (DYNSRDC) conducted s series of dyassic buckling ”“““ £, fundemental perdod T, Suler 1“‘,
Lot ““.. the purpose of whiich was to: ; } any static veight W on the column, aud
,@,:! ] H4 unyi th: column :t-:t A Vu:hb:nl“
ad - - sccounting for waterisl properties include
2 50 . a) Confirn some of the thesretical obyers
i;:: vations about dynsedc duckling, e.gs. . = . dmuy &, and nodulus of eluueuy [ AN
y :'.'lo colusne L iple ’
:f‘ o otn?u %,uhr :::uelz'y‘.:::‘u:::: :cr’:o:h In the above listing, deflection, s &
b

dependent varfablo.  But duration 0 way also

be & deperdent vatiable becuuse vertical
;motion of the wnd of the colush way affect
©dts Heuce, O WAll be & dcpndut urhbh

in thlo mlyou.
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To these dependent variables a character-
{stic strain at the midpoint of the column can
be added, 1f only one cross-sectional ;hape is
to be investigated, a3 here in this case. In a
general case, a characteristic of the cross-
section, e.g., section modulus, must be included
in the list of independent variables. The
variables (€, 0, y) give rise to three indepen-
dent nondimensional equations of which only one
{s shown below; the other two are similar. If
we have accounted for all the variables that
affect dynamic buckling, a functional equation
appears as:

£(y, ¥y £, T, ter By 0,
(1)
P, Pg, A, W=0

Following the Buckingham Pi Theoren,1'2'3
we have 12 variasbles and three dimensions, thus
there are 9 dimensionless variables that affect
dynamic buckling. After some manipulstiion, a
nondimensional equation may be derived and it
appears as:

ylyy = (&) * Bg/AE Wy, lL,
L, e 0T, te ll, P/Py, (¢3)
w/eg, a2
Note: acoustic velocity c, = (llp)xlz

The deflection ratic y/y,, the duration ratio
/T, or the characteristic -xipom strain could
be used on the left side of this squition. Of
the independent varisblas that are llsted in
equation 2, yy/¢,E/x, t /T, tee /b, A/L° and
B/Py are Juds‘d to be tﬁe aoat. 2!90\';’“:: The -
effect of the variable WP, 1s Jjudged amall

. for thess tests, But static loadls c‘on‘id[han;

a significant offect on buckling history of

& eoluma; they lower the fundamestsl fregquency,
. aaking the coluen slower ro respond than it -
. -would otherwise, In these teaty & static load.
-csme from spacara that had to. be {nterpssed.
" butwesn un applied icad and thé coluwme.  In

the vorat case of thewe tasts, the affest ..
of stetic losd was astimated to be less thun

. 10-peresnt of the t'upom of m uoluu mn

2] iuithi lud!u. ,
TSy usenmoa 3 "

o 4o thuse tests the drca wlsht nachine
show {n Pigute 2 wuw weed. A 224 1b. velight

" wae suspended above 3 solumn and When peleaded.

fhe vefght rode betwesn tailae thet guided its
dowvard path. 3Betveen the top end of the
coluan snd the deop welght was 3 s.ecer, stop
of vhleh was & croshable styrefosm Slock. - .
The utyrofoas bloek wis used to resolve

- the i-mc n! the 22¢ 16, druy welght to &

constant force which was then transmitted
down the spacer to the column below.

The test columns were made from bars
having a rectangular cross-section and to
which round bars of 3/4" diameter were welded
breadth-wise at each end of a column. The
post~test photographs of Figure 3 show the
manner of the construction of the columns.
When the columns were vertically placed in
the machine the cross bars extanded beyond
the breadth of the colurn and into vertical
guile channels located to either side of the
column. The guide channels were welded in
place in the machine, and since the cross
bars clogse £fit into the channels, they served
to keep the ends of the column reasonably
aligned, yet they permitted the top of the
column to rotate and to move vertically in
response to the drop weight.

DESCRIPTION OF COLUMN

The geometries and properties of 21l the
columns are listed in Table 1. Note that
preset eccentricities y, of the columns
were altered because of the weight of spacers
on the columns; at first they did not sppear
significent and vere not weasured. However,
later it seemed prudent to use altered values
of eccentricities. 50 the sltered sccentri-
cities that resulted were calculated and ave
shown in Table 1A. These values were used
in all subsequent eulcultt!onn lnvolvin;
sccentricity.

The columns used in these tests wets made
of 6061-T6 alwminun. The test results should
be aqually applicadle to other materials because
of the parametric nature of the testing.
uumu OF TES15 AND LOAD conmmous

For these tests a total of 9 columns vers

T used of which thres were nesrly identical and
"~ the resaining & vere parametrically varied

according to squatfon 2. The columns were
aumbered 1 through 7; note that there were 3

Ho. 7 colusns. Columns 1 through 6 were tested
twine ~ one test with an applied losd about 1/2
of their Kuler capscity and another test using

an spplied load equal to the Fuler capacity.
Colusn 7 could only be tested once, since

the drnp weight 1tdelr would buckle the column.
Por this column (3 in auwmber) Losdd of 1, 2 and 8

times thelr Euler capacities, vere uppured. .

The total nusiber of tests wis 17, encow.
pessing load conditions of 1/10 to 8 tiwes the

. Buler capacicy of the colwnns with the bulk
of the experiments dune at toad condirious

of 1/2 and tuil Rular loade. For colusn | a -
repeatabilicy test of 1/2 fea Buler capacity ey
dove. Aud coluwn 6, & short, strong tolumn,
vas tested to 1/10 of of f{te Buler capacity.



in addition to the 1/2 and full Euler load
tests. Note that these load conditions repre-
sent ideal values; actual load conditions

vere diiferent. Table 2 identifies the tests
and the ldeal load conditions.

LOAD SHAPE

Static tests have shown that styrofoam
when statically compressed to a certain stress
will crush under a coustant load. At about
50 percent strain, the styrofoam stiffens and
the stress rises exponentially till complete
compression obtains. Under the impact force
from the 224 1b, drop weight a similar load
shape, but varying in time, is obtained. For
example, Figure 4 shows a typical acceleration
history of the 224 pound mags as it crushes a
styrofoam block for which the support was rela-
tively stiff. The record shows a rise time
(6 mgec) In which acceleration reaches some
value which then remains constant for a period
of time, fcllowed hy a stiffening of the styro-
foan which gives rise to accelerations much
beyond the constant value.

Constant force crushing of styrofcam is a
convenient property for use in these buckling
tests. loading and its effects are easily
defined or characterized during tha period in
vhich acceleration, vis-a=vis force, is
constant- And also, wnuch of the theoreticel
wotk on dynamic buckling use constant forces
on coluans, though suddenly sppliad. The load
shape for the buckling tests, however, is less
"than this ideal, since it Las a finite rise
time. This paper {s concerned with the los!irg

and its effects up to the time that th!c con= .
o atant accelgtntion ends; - _

GROUPING OF GOLUMNS

; In the hucklfng tests the columns vere
divided fato three groups, as shown in Table
-3, sueh that ueccntrteltg (y f€), slendurness
({/r) and stoutness (A/{*) utm would be.
variables. Group I erontains three columns

_while Groups 11 and Iff have two colusns each.

A% Table ) shows, however, only in the tust

. ‘series of eccentriclty (Graup 1) vas it

. posiible te completely lselate ecaentricity

and keep the other non-disensional varlables

conatant, In Group 11, (t was not possibla te
isolace alenderness; the pcrlcd (1) of cilumns,
appearing In the ratts fe / ¢, slzo varied,
{0 Graup 11 l& Wik sot possible to isolute -
atoutness (A7€%); the Te /¢ and slenderaves -

rai108 algo varied. obv?ons!v, having wore

" than one variadle wakes the eoFrelation vf

© data diffleult. But when these “extra® vari=

“ables come lato play latee ca 1o chis eeport, .-

thele effects are judged to be. a&eaadafy or
rore iary r.u colunm raspouu. :

‘saxjuun.
‘compared to beading strains and also that
. their durations are short.
.the R = 1 load condition, Pigure 7 shows that
. banding atrain, and the lateral and vertical
- displacencats continue to rise beyond the

19 the period of the eolumn.
. each plot vas takes at the stert of lateral

INSTRUMENTATION

The instrumentation consisted of 2 strain
gages, 2 displacement gages, 1 accelerometer
and a timing signal. Two strain gages were
mounted at the midpoint of each column; ome
gage measured a bending strain and the other
measured axial compressive strain. Sece
Figure 2.

Displacement meters were used to measure
the lateral displacement of the mid-section
and velr :ical displacement of the upper end
of the columns. These meters can be seen in
Figures 2.

An accelerometer was mounted to the side
of the drop weight. See Figure 2.

TEST RESULTS
OSCILLOGRAPH RECORDS

Figures 5, & and 7 are typicasl records of
the responses of & colwuan to the impact of tha
drop weight., The responses in Figures 5 and ¢
are for the noninal load condition of R = 1/2
or for an applied load of 1/2 the Fuler cape-
city of the test columns. For Figure 7 the
applied load is about 2 1/2 times the drop
veaight or a nominal lnad condition of R = 1,

In Piguces 5 and 6 we can aee that the
time at which the duration of flat acceler-
ation ends, is aignalled by & sinusoidal

_motion, and that prior to this sinusoidal

action the latersl displacement reached &
Note that axisl strains are small

In the case of

pericd of flat accelervation. This is expec~
ted, since the applied load s wore than the &
Euler load, and the eol\-n would thcufon
buckle.

Figure 8 1s o con&euon of ten rocords
that shov response histories of several columus -
after fmpact by the drop weight. The plots
vere taken from oscillogecph records and are

© showm have in non-diwensionsl forwe; respongse -

{s in teruws of deflection y/y, and tiwi In
terns of t/T vhere t 1i» the real time ind T
2ero time foc

notion, #9 was indlcated in the oseillograpbs.

- the msasuted load conditions vanged frow a lov

" of R 0.423 to @ high of & = 7.8, e plots

a0

e e YU e Y R YA L. L R A I % R S O A L A R s

"4 pesk and then start to decline.

- {indieate that deflections lncroase as loadim

{ncveanes; for leads less than 70 percent of

the Buler lued (R 0.70) the deflacrions reach
Note that -

there appears to be a lag um« reswuuu

AP AL A AT A a3 0 A LA A L R L s
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of columns 1 and 5. These columns are identi~
cal except that the eccentricity for column 5
is larger than for column 1.

For loads greater than 70 percent of the
Euler load the tendency to peak appears to
diminish until R = 1.12, or the Euler load
is exceeded by about 12 percent. Beyond this
loading, deflections monotonically increase
with time because the Euler load is exceeded.

The deflection histories of all of these
records are foreshortened because acceleration
did not remain constant for the entire test
event; it became sinusoidal.

- ACCELERATION DATA

Table 4 containg acceleration data in~
cludirz peska, vise times and duratfons. Note
that the load conditione (R) when refsrred to
in the text below, are nominal, The accel-
¢rations rvanged from a low of 0.3g (Test 7A,

- coluen 7) to & high of 12,25 (Test 6C,
coluan 6). The rise time and duration of these
accelerations, decreased as applied loads
dncréaged. The rise time fe adout 10 asec .
when R = 1/2 and 5 msec vhen R = 1.0, Coiumn
~ stlffuesses do not sees to affect this vaiue.

mgt 1oad condition R » 1/2, thl dura~
tions ware, except for the test on eslumn 6,
- uu:or than 50 msec; the durations ranged
. Teom a lovw of 27 msec to ~ high of 114 msece
48 load increased, its 2uration decressed.
~ Tor eusmple when R = 1.0 durations wers
¢ generslly less than 30 msee} the low was 7.5

,'us:audzhc ht:huu‘.%-m: T

2 ~:'=mm DATA |
: hbln S‘ 6, aad ? sbow the pesk values

© . of stralne, lateral wod vertical deflections . .
2 and thelr corrresponding ¥ise times. Taese’
U valder a7e thone thet sgeorred eithin che -

T L duestion of the . flan usmse ot the ueﬁ-

cation m»:d. S

"The nm} mﬂm wite abont 8 qusremi

L of the bending stendea that ary shaws in the

;:'_"_' - tibles, They range in valuo frow O to o high
. of 1042 uinfin (st S8, Colwan 3). t-'aun

| ‘thut: yleld fae BOGLATE Srcurs at about 3600

- windin.  The nuuul stralue incveased ‘an
cload- taereised and as stiflouss. msrmﬂ.

o o Wwfoetunately, fo the cess of column 6, @

- pelatively atif¥ colidn, the sxiel gage was

 that are Lfated sre those peaks that oncurred
eatly 1% chu seeain vivords thuse thet oeeuread

BN 1ater wera grobably affected hy bending of .
-7 the columie thiaelvee, - T other words, the o
“edge of the gage vav & lavge portion of the

lataral disennion of the colusny hette,

. beadisg, e well s axtal etvala, affested

W DL L A S L

the gage reading. Early on, when lateral
deflectfon was small the axial gage gave
a truer strain account than later.

In general, bending strains are more
significant than axizl strains; this is not
surprising since the columus rend to he loug
and have pronounced eccentricitiea. Lovng
columns buckle at relatively low cowpressive
axial strains, and ecceutricity easily induces
bending strains. Values of bending strains
ranged from a low of 312 uin/in (Test 6A,
column 6) to the extremely high 19,929 pin/in
(Test 6C, column 6). Rise times ranged from
the very low 3.5 msec, (Test 6C, column 6 to
the very high 75 msec, (Test 7A, colunn 7).

DEFLECTION DATA

Lateral deflections ranged from about
gero (Test 6A, coluan 6) to a high of 3,34 in.
(Teat 7A, colvan 7). Their rise times were
genersily the same ag those for peak bdending
strains. Verticel displacements are sbout 1/3
to 1/2 of the lLateral deflections and hava
about the sane rise tiaes.

ANALYSIS OF NON-DIMENSIONAL VARIABLES

'RESPONSE OF COLIMNS

Tables 4 through 7 contain the seasured

- test data} 1t includes acceleratious, strsins,
" lateral snd vertical displacements, rise times -

and ducetlons. This data vas converted to the
noti-dinansional variables of eguation 2 and -
are shown in Tubles 8, 9 and 10, The following

. .-aection looks st each of the non=disensional
varinbles and tries to correlate sach variable
- with responses of the columns. - The re
0. that are used are lateral mmuu Yul¥y
- and bndlu smﬁutb. _ o

o ma Rt

‘Looking firet at the load ratfo R, the -

' ;'ubln show that for acwinal test conditicn

R« 1/2, the actus] loading vanged froma .. "
low of 0.423 to & high of 0.71. For noainal -

~ losd condition R 1, the sctual losdlng
© tanged free & lou ot 092 €6 & M.h of 1.33.

Flgure 9 le a uonlinear dcmﬂwy of

s respoase yly, and the  Uppiied Losd, tu the cuse
. whare R {ocreases to i the dats plot ghovs & -

decroase 1n y/y; dut thiy e only efgafficant
for thess tuu. #foce durstivas are cut ohoet

‘sftRated by hending of the tolumn; The teatus -~ O the buckilng of the coluwn fteelt. Mote,

agailn, that -ince the fuler losd wes mmlad._ :

A slwe the column would completely buckles

obvisusly lateral d&ﬂaaue_as wuld be wre '

: chan !ndiedud hare.

m: is digulﬂuat though, u that when

M w. the caset of yuu oceure (l'uuu !A); o
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see Table 5 for the bending strain of column 7.
At 90 percent cf the Euler load strains greater
than 5 tlmes the yield strain occurred; see
Table 6 for the bending strain of column 6.
Clearly, then, a dynamic compression load less
than the Euler capacity of a column can bring
-on an Incipfent buckling situation. Whether
or not a column suffers catastrophic collapse
depends in part, oun the duration cf that load,
“but more importantly on the energy absorptiocn
capacity of the columns while buckling, and
lastly on the residual strength of the column

- after the dynamic load has dissipated. For
example, a column may be able to absorb plasti-
cally a dynamic load but then it could reach

. a deflected shape such that the normal service
loads could now continue the buckling motiom.

Eccentricity Ratio

. Looking at response data for columns 1, 4,
and 5 for which their slenderness ratio (£/r)
is constant (312.5), Figures 10 and 11 show the
variaicion in peak response (y /v,) as a func-
tion of eccentricity (yilﬂ). Pigure 10 shows
that under a loading R = 1/2 the peak deflec-
tions of the columns decrease linearly,
with a shallow slope as eccentricity increases,
though the absolute value of lateral deflection
increases; see Table 5. When R = 1.0, the
responge ratio also decreases with increasing
eccentrieclity; see Flgure 10. For this case it
would appear that the response ratio should be
more than shown, since the Euler load was
attained. However, the durations were as much
as seven times less here than when the load was
R = 1/2 (see Table 4). In other words, had

.the duratisn of the load been as long as in

the condition when R = 1/2, we might reasonably
expect deflections to be as high as seven

t{mes more than measured.

The y /y responses of all of the columns
are plotte? in Figure 11 as a function of
eccentricity y,;/£. Figure 11 shows that the
responses of columns 2,3, 6 and 7 are scat~
tered about the data curve for columns 1,

4, and 5. The scatter occurs because o:her
variables affect their behavior.

Notice in Figure 11A that In the limit as
yi-ro Y, /yi* ©: {n other words the responegs
would appeatr .unbouunded. In the case of an
applied load greater than the Euler load this
13 reasonable. But when R = 1/2 theory indi-
cates that response is limited, not unbouaded.
If that indeed is true in our case, and therc
19 no reuson to suspect otherwise, then

= £(y;), such that when the y; = 0, the
maximum iateral displacement /., must also be
zero. And !f that is true, then a perfectly
straight column ¢~n not buckle when subjected
to 1/2 its Euler load. This assumes complete
alasticity during the motion of the column.
In other words, the column must be strong

k :
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enough to withstand elastically a deflec-
tion that is in theory twice the initial
eccentricity.

Looking now at test data, Figure 11C
ghows for columns 1, 4 and 5 a plot of
®h vs. y; which vas taken from Tables 1A and 5.
The plot of that data approaches zero as near
as experiment allows. For small eccentri-
cities the initial slope of of this curve is
about §y/yy = 0.83. The maximum midpoint deflec-
tion of a column is y, and

Yo *Sp vy 3

vhere vy is the initial eccentricity

“and 5h is the midpoint displacement of a column

Dividing -equation 3 by y; we have
o )'m/yi =1 + Gh/yi (34)

And substituting §,/y; = 0.83 into equation 3A
we have

Yu/¥y = 1.83 (4)

In other words when y;* 0, yp/y4~1.83.
This value {n the limit 1ot small eccen-
tricities supports the bound yo/y; = 2
deriveg ;n several related theoretical
works.

Though lavrgely of academic interest,
thera is another bound but at the upper limit
of eccentricity or, yy /L = 1/2, At that point

is again zero, but now it is because tha
co?umn is entirely bent over, and it has no
lateral movement left, In this case §y = 0,
hence y,/y; = 1.

In wummary, eccentricity does play a

‘role {n the response of a column. At low

eccentricities the response seems to be
limited to about twice the initial
eccentricity., As eccentricity goes to

148 upper limit of £/2, response decreases,
ot in the limit yu/yq » L.

Bundiug straing for columns 1, 4, and 5
are shown in Table 5, 6, and 7; these values,
after subtracting a calculated axial com-
pression stress, are plotted in Figure 12.
The strains sre consistent with the pre=-
viously shuwn deflection data, When R = 1/2
the strains {ncrease with increasing y,/f.
When R » 1.0 the s'rains decrease as y, /2
increases; hed the durations been as long
here as when R = 1/2, then the atrains would
have been concommitantly increased. In fact,
if the strains were increased by the ratio
of the duration when R = 1,0 and R = 1/2,

\h ’Jb‘ !E' 5'5'6‘%‘!’6'1 :



regpectively, then the straing would be in
Figure 12 on a curve sloped in the same general
directfon as that when R = 1/2; strains in-
crease with increasing eccentricity

Slenderness Ratio (£/x)

Looking at the response data for Group II
columng 2 and 4, Figure 13 shows the variation
of response (ym/y!) with slenderness ratfo.
For nominal ioad condition R = 1/2 the respouse
increases with increasing slenderress ratio;
on the other hand, when R = 1.0 the reoverse
appears. But as noted before, had the duration
been as long for this condition as for when
R = 1/2 then the responses would have been
more. Data for the Yemaining columns are
plotted fn Figure 13 and appear as scatter
about the line drawn for columns 2 and 4.
These figures indicate a functional relation~
ship of response and slenderness ratio.

Figure 14 is a plot of bending strain
against £/r ratio for Group II columns 2 and
4. The curves that are drawm are consistent in
slore with deflection cuives of Figure 12. In
general, it scems reasonable to conclude that
as £/r tncreases deflection and corresponding
strain would increase; the values those defllec~
tions or strains take depend on the dynamic
properties of columns, as measured by their
period T.

S8lenderness, EBccontricity and Onset of Yield

Pigures 4 thru 14 have shown functional
velationships of deflection and strain to the
variations in eccentricity and slenderncas
ratfo. These figures can be comhined to show
a rvelationship betwaen redponse (Yulyi)' eccen~
teicity, slenderness ratin, and rhe onmet of
yield in the column. For example, in 2 rolumn
with rectangular crcvs-section the bendjng
momant {M,) for onset of yield 18 o, (bd*/6)
vhere b ald 4 are cross-sectional dimensions
and g, {s the yield streas of the column
nutcrYal. If whea R = 1/2 the applied vertical
load (P) is the predominant force producing
moment, the lateral deflection of the nidpoint
of the column at which the oaset of ylelding
oceurs may be calcualeed from M. /9. Applylng
this to the Group I coluane 1, x. and 5,
boundaries can be drawn which ahow at what
deflections and eccentricitias yielding occurs.

Figure 15 shous a4 series of linear thounda=
ries that veflect various ideal ylelding
strengths for load condition R » 1/2, The
deflection eceentricity curve of colwana 1, 4,
and 5, taken froa Plgura 10, is re=plotted
here, The Intersection of the yleld dounda-
ries with this curve Ind{cates vhed ylelding
cscuts, For example, the material for the
teat columns has a yleld steafn of about
¢y = 3600utw/in.  The laterscetion of the

.

3600 uin/in strain boundary line and the
column response line occurs at an eccen-
tricity of about 9 percent. This is in

fair agreement with a 7 percent eccentricity
gained from extrapolating the strain test data
in Pigure 12. :

From the trends indicated in Figure 15 we
may conclude that columns of relatively short
length, of moderately large eccentricity, say
of up to 3 percent, and of moderate strength,
gay 30,000 psi, will not yield for loading
condition R = 1/2. And they will not yield
even 1t the load were suddenly applied. This
experimental work supports similar indica-
tions of theoretical work in this respect.

In the casa where R = 1.0 a series of
gstrain boundary curves ave not as easily made
as when R = 1/2. The bending moment that
occurs at the midpoint of the column arises
from not only the vertically applied load but
also from horizontal inertial forces and a
horizontal reaction at the support induced
by the lateral motion of the column itself.

A dynamic analysis of colwins 1, 4, and 5 for
load condition R = 1.2 proved too crude for
use in establishing a yield boundary. 8o, the
experimental responses y /y, were increased

by the ratio of the y!el? e%tain to measured
strain. The resulting approximate yield
boundary is shown in Pigure 16. This figure
indicates for the actual load condition of
these tests (R = 1,2) that yielding would
occur at about 0.6 percent eccentricity; this
agrees with the extrapolated data ia Figure 12
which {ndicates yielding at about 0.5 percent
eccentricity.

Figuras 17 and 18 relate bending strain
to deflection y /y,, eccentricity and slender~
nuss of the cen? columns. Of the tws data
curves in Figure 18, one cutve (where eucen-
tricity {9 constant) shows for R = 1 & preci-
‘pitous rise In strain boglaning at y,/y, = 4.
For comparison, the other curve {where é/r is
constant, or 112, shows a much more gradual
rise in strain as cccentricity is increasad.

Figure 17 shows peak beading strains clus-
tared vartically at about response Ym”i - 1.9
for load condition R = 1/2, Obviously, ¢oluans
of insuffictfent strength, ot of a cross-section:
other than rectangulac, may yleld aven at
dynaaie loads 1/2 of their Ruler capaeity.
data alse indicates that {uereasing eccen=
tricity leade teo fncreasing strains. This s
eongistont with proviously shown dats. The
effects of slenderness are not apparent heve. -

The

Stoulness Ratio

Turalog now to Group TtL columnu 3 and 6,
thore are three variablau so that any response



we see in Figure 23 that for nominal load
condition R = 1/2 the strains are scattered
about the 2 percent eccentricity curve. The
strains for column 1 (lowest In eccentricity)
fall below the curve while the strains of
columns 5 and 7 (eccentricities 3.9 and 2.6
percent, respectively) fall much above the
curve., This is consistent with previous data.
Ou the other hand, eccentricity is not a factor
when the applied load is greater than the
Euler load, or here when R = 1,2; the columns
were going to buckle anyway, regardless of

the eccentricity.

Threshold of Buckling

In the case of UNDEX attack on ships
experience has indicated that durations of
the shock load from conventional explosives
can last up to 6 msec for relatively low
shock levels. Durations here are those of
foundation motion of ship equipment; under-
water shock wave durations are lower. Note
further that 6 msec {a an estimate of the
upper bound of data from old ships; there
is no similar data for modeen ships.

If 6 msec duration ig reasonable for use

in attaining design shock levels, then based

on Figure 22R columns of rectangular cross-
section should have perlods greater than 6 msec,
In other words, the lateral frequency should

be no more than about 167 hertz, if columne

are to remain elastic. If peormanent sut

were allowed, then advantage could be tsken

of plasticity {n the column section. But

this is beyond the scope of this report.

The latoeral frgquency (f) of & pinned,
unloaded column i&:

fame= v/, -

whete { is tha celumn length
v/{ 1s the laverse of alenderncss ratio

and ¢, 18 the accustic velocity of the
eolunan materfal for eteel and aluminum
¢y = 196,500 ta/eac

Taking £ = 167 heetz as the maximua
frequency a eolumn may have and not buekle
elastically, we vay ealeulate a throshold
for buekling as 4 function of alenderness
ratio and the length of a coluan.  This appears
in Bigure 24,

Coluans whoso frequenc los ara lower than
167 herte fall above the golld dueve and will'
act buckle, those delaw the curve will
buckie, {f they exporience an UNDEX load
vqual to fre Buler capacity. The curve does
not apply to UNDEX attacks fres miclear
explontons; the durations fros those exploalous

can be much more than 6 msec. Note that these
tests were performed on long columns whose
axfal strain were well below yield and whose
whose slenderness ratios were greater than 90;
this, coupled with a decided eccentricity,
insured a bending failure in the fundamental
mode of motfon of the column.

Below are gsome further notes of caution
and limitations regarding the buckling
threshold of Figure 24. The curve assumes
a material at least as strong as HY-80;
that the applied load is no more than the
Euler load; that axial yield strain does
not obtain; that duration of the foundations
motions is no more than 6 msec; that eccentri-
c¢ity is less than 2 percent; and that the
cross-section 1s rectangular. Furthermore,
the curve does not raflect strains brought
on by the residual bending of the column.
That is, the column may still have a lateral
buckling velocity after the applied load has
dissipated; this induces further strains that
are not accounted for in these tests. Hence,
this curve must be considered incomplete for
load condition R = 1. Note again that static
loads could seriously influence tho dynamic
buckling capacity of columns.

Pinally with & vary short column the
predominant mode of failure is typically com~
pression on the column gection. Bending ls
of little or no concern, at least initially.

In between the very short and the long coluans
the effect of compression and bending i{s a com
plicated mode of failure, Thercfore, the results
of these tcsts should be taken as tentative with
reppect to short columns,

COMPARISON OF THEOKETICAL AND EXPERIMENTAL
RESPONSE

Figure 2% 15 a plot of response (y,/y,) to
duration ratio (6/T), When R = 1/2 tﬁ-
responses reach a maximum of y'/yi » 1.9 at

/T = 0,75, As it happens, the points fall
naiar a theoleti~zal response line derived for

a column subjected ;o a trisngular, sero tise
time loading pulse.” Response data when R = 1

.38 also plotted here, and it sappears more or

less as scatter to the high side of the theo-
rotical response curve for a triangular pulse.
And while there is no rigorous relationship
botween the test data and the thecretical

_ curven in Plgure 25A, the test data supports

theory in that there is a maximum lazo;&l
deflection of a column when R » )1/2, Also
1t supports the riaing slope of response vhen

R =1, as theory indicates in Pigure 25A.

However, reforence 7, another work on a coa=
stant suddanly applied force on 3 colusn,

- Anddcated that a leveling off oceurs when R = 1,

- Pigure 238 alown a plot of the teat data
scattered about a eurve daveloped for a

- Qb
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% A o7 there are three variables so that any response Time Ratics

o can be theorstically ascribed to any of the

ﬁ#%} three. Pigure 19 shows shallow sluped curves This section looks at several nondimensional
Ltk for the responses of these columns to changes time variables. They are t.c /£, t /T, and 6/T.
x?\g in stoutness ratio A/£“. The cutves indicacf The variables tr/T and t.¢ fZ were obtained
{f&ﬁ that strain and deflections increase as A/L from equation 2 by inspect?on; 8/T 1is also

. §ﬁ§ﬁ increases. But slenderness ratio also changed obtatned by inspection after adding & to the

Qﬁgﬂ (188 to 90) and frequency changed from 83 to list of significant physical variables.

G 269 hertz. Note that, when the responses

‘\} (ym/yi) for remaining columas (1, 2, 4, 5 and Figures 20 and 21 show plots of the

7) are also plotted, all, except that for No.
7, are grouped near the response of column
No. 3; see Figure 19A. Within this grouping
the respouse is about the same despity the
variations in their slenderness ratio (226

to 312) or frequencies (32 to 42 hertz),
suggesting that the cliange in response between
columns 3 and 6 are gredomminantly due to the
changes in their A/£° values and not in their
£/t ratios or frequencies. Note alsu that
eccentriciiy effects are low.

As to tne responese of column 7, Table 8
shows that the actual applied load on the
column was 70 percent of its Euler capacity
{R = 0,712), and Table 4 shows that this load
lasted 114 msec, For comparison, column 5 was
loaded at about 4 percent of its Euler
capacity and for a duration of 84.5 msec
which is of course shorter than for column 7.
1f all things were linear and snd the load
on colunn 7 wss the game as on No. 5, then
the response of column 7 might rvessonsbly
be expected to drop according to the load

deflection respouses y /y, and the rise time
var{ables t.c /land tr?T. The figures indicate
for load conditfon R = 1/2 that ym/y reaches

a maximum of about 1.8 which is consiatent with
previously shown data. When the Euler load is
exceeded, however, duration is a critical factor
in what the maximum response of & column will
be; obviously the longer the Euler lcad 18 ex-
ceaded the greater will be the deflection,
regardless of the length of the rige time. Thus,
the y,/y; vs. time curves in Figures 20

and 21 are wisleading with respect to theivr
general applicability to columns. They are
valid only under conditions of these tests.

Since durations ave significent, let us
use for time the ratio of duration to period
{8/™) and for response use bdoth deflection
(yo/yy) and bending strain. Figure 22A shows
de?lcctlon against duratfon ratio for actual
load conditions R = 0.55 and R » 1.2; the
data is for columns 2, 3, 4 and 6; they have
eccentricitias of less than 2 percent. When
R = 0.3% the deflections are shown as leveling

and duration ratios, or from vy /y, = 4.15 off to about y‘ly‘ » 2,0 as duration incresses
. to about 4.15 x .45/0.72 x 847llg, or yu/yy to 6 timas the period. When the Euler load g
= 1.9; this {g well within the grouping axcaeded, o7 here R = 1,2, the deflections
L 3§%| of columns 1 thru 5 {n Pigure 19A. increase wonotonically with increasing durstion
‘ {5& . ratio. The usefulness of Figure 22A lies tn
LTy Flgure 198 shows, for load conditions ite applicability te columns of any croas-
T R = 1/2, the bending l&raznl of columns 3 section. But deflection alone dogs not indicate
.) " and 6 versus their A/£* ratios. Just as if a cclumn ia sctualiy collapaing; strains
;1," deflections increase with incresaing A/&z would secn tn be bettar in this redpect.
é?@ﬂ ratios, here oo strains fncrease hut at & .
-g:g‘t‘ ‘ relatively slover rate than the deflactions. Pigure 228 shows dending strains against
:ﬁ,‘i " In fact the strain curve dn Tigure 19B indi- duration retfo for lead condition Rk = 0.55 and
i cates that once past A/L¢ = 2.5 x 107, which . R» 1,2, 1In the figure we cen see thai when
-zéhé . is a relatively long and thin column, that R » 0.55 the strains appesr to be leveling off
i bending strains rise very slowly. For the to about 2600 uin/in s duration increases to
@ . saterial of this test ¢, = 36Q0udn/in, and 6 times the pericd. On the other hand, when
' thet value {s resched vhen Ared =100 x 107 & = 1.2 steains for In excess of yisld obtain,
?‘,e 2 vhich indicates a very short, stout column. “Thet ylald strair obtained was expected, simue
5559 the Buler load wan exceeded; but vhet {s note=
5N The strain datd for the other coluans vorthy {s the great sensitivity of strain

show considerably more scatter then did appesr .

to relstively saill changas in the ratio of
“4n the deflection curve in FPigure 49A. ‘The

. duration to pariod. Thie agrees vith theoreti~

M_
o

A5 scatter is undoubtedly dus to the changes cal work of refarences 3, 6 acd 7 even though

e {n the section proporties of those columns. those vorks deal with other loading functions.

ke Tue gurve of Flgure 228 suggests that to avold.

t ':‘x Baged on Figure 19 it seema stouiness a precipitous rise in stealn, cectangular coluens

a:l'n:1 has i{ts sost effect on deflection and bending should have periods equal to or sore than the
viﬂ‘- steain whan columny are velatively long. Fot duration of the loading. '

ey velatively short columns ft has l1ittle signi= - : ‘

sl ' ' If we re-plot Plgure 238 to include sther

ficauce on dending strains. :
) . stealn data, such 38 Prom columns 1, §, and 7,

)
4
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sinusoidal leading on a column.b And, in general
one could conclude that this theoretical curve
could be used with some confidence to predict
motions of these columns when subjected to a
triangular pulse of a finite rise time, having

a peak equal to the Euler load of the column.

Figures 26 and 27 are comparisons between
the experimental response histories of four
of the seven test columns with those histories
derived from theory. The theoretical equations
were taken from reference 4 and are shown
below:

l-u-R 1 < S
}'/}’i = _i-f',%g-_»'t' R<1 ( )
- >
Y/yi < R cosh gftz 1 R*1 (6)

where w is 27/T

In the case of a load condition less than
Euler load (R<1), the theoretical equaticn
overestinates the actual response by s factor
of about 2; note also that the peaks do not
appear to be in phase probably because of the
rise time in the test loads.

In the case of R >1.0, theary usually
overcstimates teet data dut the phase appears
about the sane. Rise times were less here
than when R = 1/2, Pinally, theory and :est
data ars approximately equal for a time up
to shout 10 percent of the pariod of an

»unlouded column.

RURATION OF LOAD

Figures 28 and 29 are plots of the period
to duration ratio as a function of slenderncss
ravio ( &r) and load ratio (R). Values for )
period T and duration & were drawn from Talles -
1 and &, respectively, Figures 28 shovs that
duration vas affectad by the stiffness of
the coluen. On the other hand, Piguce 29

-ghows that duration can have various values

for sssentially the same load ratio; thia

‘meane that duratfon depends on uther factors

basides R, sieh as slendetnuss ratio. In UNDEX

- attacks agatnst Navy ships the dutation of

<

the applied load depends on thu mpou and

- attack geomstry.

CONCLUSIONS

1. Froa the avidence of theory and these
experimental results, a pinned coluun sud~
jected to & dynasic load equal to 1/2 the
Euler capacity of the column will not buckle
provided the column can elestically withetand

a lateral deflection twice the initial eccen-
tricity. At zero eccentricity a column will not
buckle.

2. Dynamic compression loads as low as 70
percent of the Euler capacity a column can
effect ylelding strains in a column, and hence
bring on an incipient buckling condition.

3. A column subiected to a dynamc load equal

to its Euler capacity must be considered in

an & priori buckling situation. The seriousness
of the situation may diminish as slenderness
and as eccentricity increases. But to take
advantage of these factors requires extensive
data on duration of motions of foundations

on modern ships when subjected to severe shock
levelg from ccnventional explosives. Having
neither extensive nor certain data on durations,
columns degigned to carry a dynamic load equal
to its Fular load invite collapse.

4, The theoretical work cited in this report
have not been rigorously validated becuse the
loading function in theae tests have a rise time.
Howevar, the experimental curves developed for an
applied load half the Buler capacity corroborate
theoretical predictions on the lateral motions
of buckling colwumns.
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DISCUSSION

Voice: In the present design environment many
use a handbook and find the allowable static
load on a column. But they are concerned with
shock respons2, and they want 1t to be
translated into stress based on the static
reliability function. Did you say the dynamic
load should be less than half of the standard
static load?

Mr. Ready: If you design a column sc¢ that you
allow only 50% of its Euler lead, it probably
won't buckle. You certainly have to look at its
eccentricity and strength to know whether it is
in a strained condition so that buckling can't
take place. If you have a static weight on the
column, it may withstand motion for a while, but
that static weight may continue to collapse the
column. This is a guide to steer your way
through.

YVoice: What vas the pulse width of your dynamic
load, the peak load?

Mr. Ready: The longest duration was about 120
milliseconds, and that was for 50% ®Buler load.
That wvas the longest I could get. The durations
would drop down to 4-6 milliseconds for greater
loads.

Voice: Could you have higher loads for 20-3
milliseconds? :

Mr. Ready: T could get a longer duration with
the lower load. It was Just in the
characteristics of the atyrcfsam pad,

Voige: Is. this to be used 'ror design
guldelinea?

Mr. Ready: 1 don't knov whether the Navy will
offieially adopt it. »

Voice: What was the major reasen for the higher
pradiction as -oppesed to the experimental
results? : '

Mr. Ready: It vas a different loading. I uged
4 step pulse in the analysis, We used & ramp

. pulse i the test, It didn't wmake any

d4{fference on the long duration triangular pulee
hecause they converged.

Mr. Basdekas (OHR): Would you comment on the
preloading of the eoluma?t

Mro Ready: I had 1t ag one of the teras. 1 had
W to aecount for statie or dead velght on-the
goluen, btut 1 didn't investigate that. I looked
&% the particular velght thus I useds In =y
¢ase, {t made about a 10% difference conpared to
vhat {t would have baaen with ware veight., You .
have to boe eareful {f you uin designing a
eolusn, with a statie load; it can affect it.




Figure 1 - Idealized Column
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TABLE 1 — COLUMN GEOMETRY AND PROPERTIES

Column
Property
1 2 3 4 5 6 TA* 7B* 7C*
Length (in.) 45.0625 32625 20.375 45.0625 44.875 13.0625 40.875 40.875 40.875
Sides (in.}) 1x1/2 1/2x1/2 3/8x3/8  1x1/2 1x1/2 1/2x1/2  3/8x3/8 3/8x3/8  3/8x3/8
Area (in.z) 0.5 0.25 0.1406 05 05 0.25 0.1406 0.1406 0.1406
Inertia (in.4) 0.01042 0.0052 0.00165 J.01042 0.01042 0.0052 0.00165 0.00165 0.0015
Radius Gyration {in.) 0.1443 0.1443 0.108 0.1443 0.1443 0.1443 0.108 0.108 0.108
Offset (in.) 03125 0.625 0.343 0.8126 16875 0.219 0875 0.875 0.934
Frequency (hertz) 223 43.1 82.7 223 223 268.7 206 205 205
Euler Load (lb.) 5065 482.2 392.2 506.5 506.5 2973.0 9756 975 97.5
Slenderness Ratio 3123 226.1 188.7 3123 3123 90.6 3785 37856 37856
Eccentricity Ratio 0.00643 0.0192 0.0168 9,018 0.0376 001105 0.0214 0.0214 0.0228
*Refers to Test Nos, 7A, 78, 7C.
TABLE 1A - ALTERED COLUMN ECCENTRICITIES (VI)
Column
1 2 3 4 5 6 7 7%
Static Load {ibs.} 17 7" 0 17 17 3 17 17
¥; lin} Altered 0.3238 - 0,648 0372 0.8405 1.7455 0.221 1.08 .13
*Tost 74 and 7B. o '
**Test 7C.
TABLE 2 - LISTING OF TESTS AND NOMINAL TEST CONDITIONS
- ' TEST NUMBER
COLUMN . . e
o A* =172 R‘*Lﬂ R* e Other
- 3 | 8(R#10)
2 4A - 4B
3 A 68 NA
4 A 8 NA
-] 34 s . NA
] 1] [ GA (R = 1/10)
? 7A NA 1MBR=2
7C{R=8)

'Nomma! values o' tatio ol wolhd hﬁd (P) w colurmn Eulu I.w (PE) Re PI?E.
“NA - Not Applicabile.

9%




[N
in)
::#:v?
by
’..Fst:‘e
R TABLE 3 — COLUMNS GROUPED ACCORDING TO NON-DIMENSIONAL VARIABLES
£ gl
Lk
O 00
;&é \ GROUP |
e COLUMN VARIABLES CONSTANTS
3
: 1 z
ay 4 v/ ANRE, 2, Te, /2
) 5
f-l!!'
s GROUP 1!
it COLUMN
syl
Nlhe 2
e 4 olr, Toght vilt, Alg2
st 0
GROUP 11}
COLUMN
: AN, 4, Toglt "

TABLE 4 — ACCELERATION DATA OF MASS IMPACTING ON COLUMNS

R* = 12 RY=9 R = Other
Column -
Ay % ] ho 1 ] Ay Y 0
1 1.01 .15 67.0 253 36 635 21" 63 335 |-
2 e . 22 52,0 238 65 . ,_2..5 : - NA - S
3 {1 108 105 8.0 287 82 - 185 " NA
4 400 - 87 ns 2.16 3 0 w8 " NA
8 098 120 M5 208 39 . 135
_ S - R=310
B ) 8.1 92 - 20 122 - A2 15 143 94 985
? 9.31 104 1490 NA. 10 - 88 _ 216
. Acceloration = A,lg's) : ' ' '
RisTime = ¢, Tmasc)
- Duration  ~ 8 {mee)
*Nominsl Valus ot R -

NA = Not Applicable




TABLE 5§ — PEAK COLUMN STRAIN AND DISPLACEMENT DATA, R = 1/2 (NOMINAL)

Column €p t, €y t Sh t 5, t
1 104 NA 386 19.5 0.28 350 00 NA
2 319 78 343 105 042 105 0.0 NA
3 128 6.8 1683 250 032 130 0.0 NA
4 49 NA 1154 270 0.67 260 0.28 26
5 48 20 2107 450 1.13 45.0 0.6 45
6 * NA 1884°* 9.0 028 200 0.12 20
7 201 55 38N 750 334 920 1.26 92

NOTE — Valuas listed above occur attime t < @

NA — Not Applicable €p  — Axial strain gin/in (Comp.)
*Gage effected by bending of column, calculated ¢y  ~— Banding Strain gin/in (Ten.)
strain = P/AE = 727 pin/in

8y = Midpoint Displacemeant in
8, - End Point Displacement in
t, ~— RissTimemuc

*%6p = € (Meas) + ¢4,y (calculated)
ep = 1169 + 727 = 1884 pin/in

TABLE 6 - PEAK COLUMN STRAIN AND DISPLACEMENT DATA R = 1 (NOMINAL)

Column €A Y €y Y, By t &, , t
1 U . 65 3000 - B1S 289 515 | 070 615
2 M 4 Y 228 201 225 0.68 ‘225
3 02 - 26 | se89 0 ns . 100 0.8 100
4 22 . 66 1800 ns | 1we - ns | o0 00
5 12 48 | e 125 091 2s | om 128
6 O NA | e s 105 35 023 as
) _ " NOTE = Valuss listad sbiove cccur st time t < 0 ' -
NA - Not Applicsble S ep = Axiehstrein in/in (Comp)
* = Effscudby bandingincoluma € - BendingSusin pinfin (Yen)

- 8y~ Midpoiat Displscement in
8y -~ End Polnt Displacwnent in
. = Riw Time o

9




A
3 t)
:t:i‘:n:
l%‘l’j
‘9 ’,"
s‘:'!':
q-::!' TABLE 7 — PEAK COLUMN STRAIN AND DISPLACEMENT DATA R = OTHER
¥l
}‘ﬁ. Column R (Nom.) €A t, p t, _ h t, 8, t,
;:;s 1 1 169 4 2514 265 217 265 1.21 265
; % 6 1/10 484 13 312 125 0.0 NA 00 NA
2530."5 ; 2 242 3 1183 215 116 13.0 0.39 13
‘)' 8 686 7 2622 70 0.03 10 0.0 NA
|
“;;i“l‘. NOTE- Values listed abave occur at time t < 0
W
ft"‘:: NA — Not Applicsble 8, — Midpoint Displacement in.
[))
;!t::i:: € = Axial Strain pinfin 8, - End Point Displacement in.
OO
N ¢ ~ Bending Strain uinfin t, - Rise Time msec

TABLE 8 -~ LIST OF NON-DIMENSIONAL COLUMN VARIABLES R = 1/2

Column ymaxyy Vit (UI2xPglAE o 1t et 0 Tx100 RiActus) AR o7
1 1866  7.18x10°3 9.89 3125 327 09673 045 2462108 182
2 1644  19.88x10'3 9.86 2261 7648 0538 052 2343104 225
3 1849 182 x11°3 993 1887 10125 08685 0623 338 107 645
. 1784 18.65x11°3 9.89 3125 3783 04786 045 2462104 162
5 1647 389 x113 989 3126 5254  0.2456 0423 2483104 192
6 218 189113 8.74 805 13837 2381 0611  1465x10°% 7.3
? 415 2683103 9.94 3785 4999  0.197 om2  sawEx108 234

o1, = reters to accelesation risa time, ' S '

'TABLE 9 - LIST OF NON-DIMENSIONAL COLUMN VARIABLES R« 1

Coumn vpaxly  WE  (NxPRAE o - vyl o /Tx0d Rl AKZ o
9 9.07 - . 3125 1580 0080 142 a 08
2 a2 ey B 02w XTI * -
'3 aes ’ 1887 S0M4) 0430 153 . SEE 138
4 am  SEETABLER - 4p% w4 0083 - 122 TABLES 042
5 152 3125 1708 008 131 : 031
6 5.751 - 905 060 1263 092 7 202

ot~ relers to sccelerition rsa time, I '

YABLE 10 - LIST OF NON-DIMENSIONAL COLUMN VARIABLES R » OTHER

Come vmaly WK WoPapgiAe W yene wetxio? piacen  w@ o
S A e e N2 w7 - 0w 120 - 2482104 078
6 10 wemod  9m - 905 00 00 . 009 148 x107 59
" , o wmemed o oes aws a3 048 23 sA1 A0S oA
w3 nea0? s 3es BN o 78 sarawS oax

*t, ~ relors to scceleration rise trme. ' ' ' '




LARGE DEFLECTION RANDOM RESPONSE OF SYMMETRIC

LAMINATED COMPOSITE PLATES

K. R. Wentz, D. B, Paul
Air Force Wright Aeronautical Laboratories
Wright~Pattorson Air Force Base, Ohio

C. Mei

Department of Mechanical Engineering and Mechamics
01d Dominion tniveraity
Norfolk, Virginia

Large amplitude respoase of symmetric lamipated rectangular plates
subjectod to broadband random acoustic excitation is studied analyti-
cally. The boundary conditions coneideved arc all the edges simply

supported and all the edges clamped.

The inplane cdge conditions

considered are immovable and movable for each of the abeve cases.
Mean-square deflections, mean~square strains, and equivalent linear
fraquoencies at varlous acoustic loddings are cbtained for [0, 265]5
and [0, %43, 90], graphite-epoxy laminates. The analytical results

- are verified through comparison with experimental data. The results
obtained can be used in the sonic fatigue design of composite air-

. eraft panela. - g

- INTRODUCTION

The neod to impreve sonie fafigue resiatance

- of alreraft strustures hae become increasingly -

" juportant as a result of military and commer~
-etal demands on curvent and future airplane

- eesifea. A significant nusbor of theoreti-

T eal

of the senie fatigue desien of aivevaft struc-
tures have been undertaken during the past

- several years o help provide the needed vali~
abitity. The majority of analytical investi-
gations te date have boen forsulated within the

7 frasevork of Linear or swall=deflsction steue-

_earal theory, Tast vesults [5, 7, 9-12] on

vatioua airceaft panels have shoun that high

© nolse levels in encass ef 120 98 produce non-

_ tinear behavier uith laege deflections. fTie
lineay analyses often prodiet the root-wean~

square (Rxsg deflection and RMS stresses wall

" gbove those of the experiment, and the freo-
‘quencios of vibration well below these of the
experiment [5, 7, 9, 11, 12). te is vell keovn
that the prediction of soni¢ fatigue life is
based on KNS stress and predeainaiit respoase
feoquancy it conjuitction with the strems Versus
eyele to failuee (3=4) data. Therefure, the
_use of linear analyses results in a poar

" egtimation of panel service life,

1=6] and ewperimental favestigations [7-12]

High strengih.and ﬁigh wodulus fiber~

- veinforced composite wraterials ave under dovel-

- opment for use on aireraft. MNany of these
-conposite seructural components are exposed to
“high intensity nolse fleids and arve therefore

subjeet to sonie fatigue, 1In the present -

- paper, the large deflection response of symmset- -
- rie 1aminated rectangular panels subjected to ) o
broadband random acoustic excitation is studied
. analytieally. The nonlinesr equations of - T
“motion for symmetrie laminaces. ave derived iu

toras of a stvess funetion. ¥, and a lateral.

. displacament, M. Due to the complex nature of -

the problem, the study {s restreicted to single
wode response. A deflection funceion vepre«
senting the first wode is asniwed, Correspond-
ing to the assuwed wode, & stress funetise
sacisfying the different inplane edge condi=
tions ie obtained by solviag the compatibility

equation. A wodified Calerkin's wethod s viwem = :

applied to the governing equation of wstion to

“yield a wonlinear timewdifferontisl equation.
 Assuming that the exelcation is Qaussian, the

sgquivalent linearization wethod [13] is em=
ployed ia ardor to linearize this equstion.

An fterative protedure ie introduved to obtain
NS suplitude and equivaleat linear {or noa=
liﬂagtg freguoney at virious acoustic loadings

 for-[0, 263 4 a0d [0, =43, 90), graphite-eposy
taminates. WNS stvainw ave also obtained aw

futeticas of WNS amplitude and at locations of
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interest. Solutions are developed for the out-
of-plane boundary conditions of all edges sim-
ply supported (SSSS) and all edges clamped
(ccCc). Two inplane edge conditions considered
are immovable and movable for each of the above
cases.

The accuracy of the analytical method is
investigated thru a quantitative comparison
with experimental data. Experimental response
data for [0, +45], graphite-epoxy laminates
from a previous Air Force sponmsored program are
compared to the analytical results. The com-
parison demonstrates that a better correlation
between theory and experiment is achieved when
the large deflection cffect is included in the
formulation.

NOMENCLATURE

a,b plate longth and wideh

AD - laminate stiffnesses

A% inverted laminate stiffrnesscs

€1.62,D1,D2 constants

err, error of linearization
£fq¢) ncan-square of q
E1.E2 Young's moduli 1w major (longitu-

dinal) and miner (transverse)
prineipal material directions

) equivalent linear frequency in Ra
- F ) stress function
- By ~ eenstants

63 © shear modulus

[} _plate thivkaess

S W) ... frequency vesponse function

R © wmiddle surface eurvature -

i wachiematical operator
B nass coefficient :

N cesultant bending mowent ) Co
! _ awsber of layers : S s
% " resultant narmal teree

. constant

o . préssure leading

T " wadal amplitude o¢ displaeeaent
Q “reduced stiffness
Q transforned, veduced stiffnoss

r length=to=width eatio
C (D) autesorrelation funetion -
§ -pondinensional encitaticn ipéetrai ,
: o densfey patameter
- 8w spectral density function of
. exeitation pressure pl )
v . tiew : -
u,v . displacensnts af ﬁisdla suriaae
R - eraneverss deflection
S W¥,2 _coordinates
& “aonlinearity eoeffigient
L _wead{senel onal uonlinearlty

castiicient
e strain
4 danping ratis, /¢
& C lawinatien angls
L ’ us«d:aonﬁsunas fecoquaacy pnraa@tvr
s © - Potasen’s eutls
@ plate wass deasiey
$ strows
LTE R I - fufetiea aefiuo: te sguItica (lé)

10

w radian frequency
f equivalent linear or nonlinear
radian frequency

Subscripts

¢ complementary solution

p particular solution

X,¥,2 corresponding directions
linear

1,2 major, minor principal material
directions

Superscripts

k kth layer

T transpose

EQUATIONS OF MOTION

In this section, the governing cquations arve
derived for a symmetric, angle-ply, laminated,
compouxte plate.  Using the Kirchhoff hypothe-
sis of classical thin-plate theory, the total
strains can be oxpressed as

0.
€aoE 2 ‘x

x
¢, :g .2z Iy ' |
S ‘:y sk, Y

The strains in the middle surface, considering :
" Karman=type gaauatriu nonlineariey. can be

: expressed as-

0 ' “’
I T i ’!',.
v

i':‘; Ve

g:y - u,y . V.‘ [ U. 'y -., »: (??.;_ .

. o ) 9
 Assuning snall slopes ik €€ | ete.) as vell
a8 the Bleehbhoff wypotiesis, the wildle sup-

face eurvatures can be expresied .as

. . N
‘. k%

Ky @ Wy v o
tiy SZu.:y 7 [¢ )
The plate sguacions ars ebtaiacd by applying

toree equilibeiwn of an eleweat of the kel
{averv of Eae laninate,  Ihtegeating theee
eguations over the plate thickness b, negleces
ing iaplans inortia and rotary inortis terns,
afd ¢éctaining those nanlinear tevns ia accard~
afice with the voa Ravean asgerptisns, lead to
the folloving equitions of watien -

“‘d‘ _. w"ny «0 ﬁ“yv‘ * N’o’ “0 (=)




METHOD OF ANALYSIS

SIMPLY SUPPORTED EUGES. Consider a simply
supported, rectangular, symmetric composite
plate of dimensions a, b with the origin locat-
ed at the center of the plate. The boundary
conditions are:

x= /2 W=0

+ znlﬁulxy

DWW, * DyW =0
[RLLP 129y

/2 W

0

W, . ¢ Dy, + 200, =0
DyaWi ¢ D22 'y 2Dz sy

(20)
For the inplane condition of zevo shear stress
at the edges, the defloction function is
assuwed as

W s gle)h{cos %?)(cos %&) (21)

© Substituting equation (21) for ¥ in equatxan
(18) and solving it, the stress function is .
cbtainad as
FeF oF (22)
¢ p

in which the particular selution is

- . OWE 2= 2
Fp - - 5—5-25_(?]@ 605_—“ + ¥y 30_5 "sl)(z;) ‘

viiers the ceastants P

iy G0 b@ exp“@saed in
© terss of the laminate h :

iffnoeses - au

Flo“"‘t".'

A

Vrﬁl"&?‘r'a

. f,’r{%

- The eeﬁaleanntarg solution. Fo will nov be

()

ebuined such that {t satisfies waary condis

tishs. Far wovable edgu. ‘the v “lane bound-
ary 66&4;&(6&: are : )

I'W3 'i".o

: 97] ’
- Lr.,,ano

g o w2 r.,l,.-‘o' |

M
[fmtee

8y making uiv of these conditions, {t can be
shovn that ¥, is eero for ewvable inplate
ddsdd. Me&
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. edent, »
eoeflicient &%

FaF (26)

P

With the assumed deflection W given by
equation (21) and stress function F given by
equation (23), equation (15) is then satisfied
by applying a modified Galerkin's method:

ff[ohﬁ + LW - 8(F,W) = p] Wdxdy
b/2
. f. e war2lindy a2

b/2
:/' (Nx aﬂalZ( ¥ )x-aIZ
-b/2

al?
‘v/:aIZ q‘y)y = _-blz(u'y)y ] -blz""

a/?
:/:a/z Y an
which yields a modal equation of the form
Feujeene -
9 ] Gh"
[N Ea .
S
T ek A
JulN (29

« gle (0110 20y © B @ ')

) ' "y - . .

. . .

8 * TeERFe * fo_:) €30)
Were ¢, is linear vadian treqwucy. By is nsne -

mwarity coofficient; and & is Adss ceolfi«
Yhe linear Crequeney Yy and nonlinearity
y are aondivensional paraneters.

For ivsovable cdges, the iaplane bouadary
cotiditiond of gero Shear Etress and 2eto doraal
displacott at the Jour odgos aAte
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Moxx * ey uy '“"&'.w *E Mgy ¢ WMy (s)
* Ny‘ vy +p = pghN

where N and M are resultant normal forces and
resultant bending moments, vespectively, de-
fined in the usual manner of classical plate
theory, and the average mass demsity of the
laminate is defined by

L[ w2
o =h

oz oo™ a: (6

the distributed transverse load is simply

[h2 '-
.« oK)
Pee; I-h/'.' -

The constitutive relation for a symmetric

 laminated composite plate is given by:’

WO B

T C e 1
N e lu‘ ».) h"l _

Wl H, M)

AL “: e &0 y,

K tu‘sy;t‘y) L

wheve

- gad ;M Idﬁmaté stiffnessss & arai 9 are
-aymtric vatrices deflined by the r@lanaus.

o “13_{“55) "fm'-“-‘.'ﬁu @ . ‘}9’

‘The ©,, are the tfisforeed, :séuﬁea criftness

£ BPOPEALS 51’. 13).  dor :ha[ . 28], aad - _
§mmmd plawe it can %é showa -

@ "h ' . o - -(“)' . :

"‘! 1]

=3

. | Wamnanishing pneivh!e ef A, b a6d Q1 afe given
AW Keferenre 16, - l.(guati@tu (&) cati ati be rewtitten
a8l . . .

G e
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where

Y. (13)

Nonvanishing components of the inverted lami-
nate stiffness A% are also given in Refereuce
16.

The Airy stress function F is defined such
that :

T
- {r-‘.W Pk -F'xy} (14)

Using equations (3}, (9), (12) and (14) in
equation (3) leads. to the equation of motion in
the transverse divection as

ohid » LW = 4(F M) =p= o (15) -

where
V 3h 3l
Ly = e * ﬁn‘gm * 3(912 + 2ge)

34 all ah
L R

PN = By By ¢ Py = gy s

The ematihility- @quatiat\ is darive‘d :

- from equation (2) and is written ae

R R 0y
”” €k ® Sayx O!Q(U,N)lo : (1-7)7 |
Vsing GQ‘mti@ﬂs (12) and £18) ia equacion (17), -

the eospatibility equatiea iﬁ tem af g aua L
is giwa below -

'Lyhffe(w)-o” o r-"(lﬁ)"

vhiere

F b

"ai‘a“" (ahs, » A3 )s-;r? A m)

tguations (15) snd (18} are the goveening -

squations which will bo wolved by enpleying
wadifisd Galevkiin'e spproach and the eguivas

_lent lineavization ﬁéthﬁd




X = % M =
a/2 F,xy 0
1
el - Lu2iexey - o
y = tb/2: F'xy 2 0
0. Ly
,LYXCY 3 W,y)dxdy =0 (31)
The complementary solution is assumed as
S L
Fo=N 5+ N5 (32)

Upon using relations (12) and (21) and enforc-
ing the conditions of equation (31), Ny, Ny,
and Nyy in equation (32) are obtained as

- 2h2q2
N ® T, AT

- 222 Ay _ AL
N ’_q_ﬂ - (33
o (-4

The particular solution Fy has been ob-
tained and given in equation (33) The total
_stress functiom, therefore, is F = F, + F, for
immovable inplane edges. Substituting the
stress function F and the deflection W in
equation (27), the modal equation is obtained
as follows

(t)
Lm—- (34)

[T} 2 3
g+ wiq * (Bp + Bc)q =
where

*B h2

B 8 ob

.
8

L (a2 - 2A12r2¢ Anr
¢ 8Exhrh

) (35)

The term B, is an addition to thr nonlinearity
coafficient due to 1mmovuble inplane edges; the
nonlinearity coofficient 8, is a nondimensional
parameter, Equations (28) ana (34) represent
the undamped, large-amplitude, modsl equeiions
of simply supported rectangular, symmetric
laminated, composite panels with movable and
immovable inplane edges, respectively. This
nonlinear modal equation will be solved by
employing the method of equivalent lineariza~
tion,

CLAMPED EDGES, Tha doflection function which
satigfies the clamped candition on all four

Aquz - Mz
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edges of the plate is assumed as

W= SS%lE (1 + cos Z%-}3)(1 + cos Z%X) (36)
-The clamped support is simply
= 9 = =
x = %af2: W W,x 0
y=1b/2; W=W, =0 37

Introducing equation (36) in equation (18)
and solving it, the stress function is obtained
as follows

F=F + I-‘p (38)

25242
2 (o By e B

2
+ F1y cos =X cos 351* Fa0 cos “Tx + Poa cos -‘-EZ

+ F3) cos -- cos —sl + F1z cos == th cos .sl) (39)

where the constants Fy: can be expressed in
terms of the laminate stiffnesses and the
length=to-width ratio of the panel (r = a/b) as

Fio ® =~
Az

1
For = -
At
2
[] [] [ ] []
A2z + (2A12¢ Agg)r?  Appr®

Fyy @

Fag « —1
16A;,

Foz * =——
16A)r

1
¥ (3 C 2 LA
16Az3 + 4(2A12 ¢ Agg)t®  Anr

Fa1 =

1
[J [] L] z L)
A2z * 4(2A1 ¢ Agg)rt ¢ d6A T

Fi2 ® v (40)




It can be shown that for movable inplane edge
conditions [eq. (25)], F, = 0. Hence,

F=F (41)

P

Introducing the expressions for W and F, equa-
tions (36) and (39), and applying Galerkin's
method:

JJ ot + 13w - oCF,0) - pludxdy = 0

yields the modal equation

A+ ufq+Bade 2—‘;) (42)

n» 200 3)

2o » 8t {sou s 2(D12 + Weg)rE + 30 ~}
PSS 2+ g 227
(4ba)
* 'll
Bp ® BEgh (F1o % For ¢ Fuy @ Fap ¢ Po2
+ § (a1 ¢ R2)) (44b)

in whizh «; {s linear radian frequency, fp is
the nonlincarity coefficient, and m is the mass
coefficiont, The linear fraquency ). and non=
linearity coefficient 8% are both nondimension=
al parameters. p

For the case of the clamped plate with
immovable edges the complementary atress fune-
tion ls assumod as the form appearing in aqua-
‘tion (32), Upon enforzing the inplane edge
conditions_[eq, (31)],_it can be shown that the
conatants Ny, Ry, and Nyy are ebtained as

N ou—tainled (Ls.i._é.iﬂ_)
X 3(ApAa - AT a2 B

3q2hied (.w, -Aia‘)

S2(AAz: - Ay \ B3 a2

Ry e0

Fye

C(4s)

104

Using equations (32), (36), and (39) and apply-
ing Galerkin's method yields the modal equation

- 2 3 _p(t)
q+ wiq + (Bp + Bc)q == (46)
where the additional nonlinearity coefficient
due to immovable inplane edges is

* pon2
Bc = Bc E2h
pb*

8" - ™ (Azz - ZA'zr2 ¢ A) r“)
- [
8Ezhr* AAz2 - Ap2 %7

Equations (42) and (46) represent the modal
equations of undamped, clamped, rectangular,
symmetric laminates undergoing large deflec-
tions with movable and immovable inplane edges,
respectively.

DAMPING FACTOR, 1t is known that damping has

a significant effect on the response of struc-
tures. The precise determination of the damn-
ing coefficient of a given structure, therefors,
should be emphasized, Two methods commonly
used for determining the damping characteris-
tics of structures are the bandwidth method

and the decay rate method, In the bandwidth
mathod, the half=power bandwidth (= 2%) is
measured at modal resonance. In the decay rate
mathod, the logarithmic decrement (= 2n) of
decaying modal response traces is measured.

The values of damping vatio ¢ (- ¢/cg) gewerale
1y range from 0.005 to 0,05 for the commen type
of composite panel construction used in air-
craft structures [4, 12, 17]. Once the damping
ratio i3 determined from experiments or from
exioting data of similar construction, the
modal equations [eqa. (28), (34), (42), and
46)] can be expressed in a general form as

Q4+ 20§ ¢ Wiq +3g? . P-%Z (48)

The method of equivalent limeavization will be
used to obtain an approximate RMS amplitude
from equation (48),

METHGD OF FQUIVALENT LINEARIZATION. fThe bamie
{dea of the equivalent linvavization method .= -
{13, 18, and 19] can be obtained from the
linearized equation

§ v 2wy s ntg v B8 t69)

where §i i an equivalont linear or wonlinear
trequency. The ervor of linearisation, a
raudow process, is

orr w (ud ~ ¥)q ¢ gt (s0)




:
:

which is simply the difference between equation
(48) and equation (49). The method of attack
is to minimize this error in a suitable way.

The usual choice is to ninimize the mean-square
error E[err®], that is

392 —=Elerr?] = 0 (51)

If the acoustic pressure excitation p(t)
is stationary Gaussian, is ergodic, and has a
zero mean. Then the approximate displacement
q, computed from the linearized equation
eq. (49) , is also Gaussian and approaches
stationarity because the panel motion is stable.
Substituting equation (50) into equation (51)
and interchanging the order of differentiation
and expectation yield

(wg « 92)E[q°%] + sE[q*] = 0 (52)

which leads to the relation b. ween the equiva-
lent linear frequency and the mean-square
displacement as

af - ug + 38E[q?] (53)

2
Dividing both sides of equation (53) by %ﬁ%r

yields
Moa xg + 38%g[q?] (54)

vhere 22 is a nondimensional equivalent lincar
or nonlinear frequency parameter and E[q?] is
the maximum mean=-square deflection of the lami-
nated composite plate. The linear, frequencies
A, and nonlinearity coefficients g~ are given
in equations (30), (35), (44), and (47) for
difforont support conditions,

The moan~square response of wmodal anpli-

" tude from equation (49) is

Bla?) = Jy S(0) (o) |2 (55)

where 5(+) is the PSD function of the excita-
tion p{t). The frequency vesponse function
H() {8 given by

(56)

) 1
ll(w)." ' EEI S Zigmﬂu{)

Por lightly damped {z - 0.05) struetures, the
froquency rosponse curves will be highly peaked
at the equivalent linear frequoney 0t (not at g

as in the small=deflection linvar theery). -The

{ntogration of equation (53) ean be greatly
staplified when the wpectral denmity of the
oxeitation s slowly vaeying in the neighbor-
hood of 3 and S(A) can be troated as constant
in the fr@quenuy band surrounding thia non~
linear resonance poak fiy then aquation (55)
ylelds . .

4uzzuoﬂz

In practice, the PSD function is generally
given in terms of the frequency f in Hz. To
convert the above result one can substitute

Qs 2nf
s(a) = £ (58)
$ 1

into equation (57); then the mean-square peak
deflection becomes

;k‘:z—:'z' for simply Supported Edges
8(q?] =
'1:2:* » for Clamped Edges (59)

The PSD function S(£)/2n has the units (Pa)2/Hz
or {(psi)?/Hz, and S in equation (59) is a
nondimensional, forcing excitation, spectral
density parameter defined as

S(¢

-
p’h‘ B2\ (60)
pb*

The equivalent lincar frequency parameters A2
in equation (59) can be determined through
equation (54).

"SOLUTION PROCEDURE. The mean-square disﬁlnce-

went E[q?] in equation {57) [or eq. (59)
evaluated at the aquivalent linear fregueuey fl
(or A) which is in turn related to E[q?]

through equation (53) [or eq. (54)). To deter-

"mine the mean-square defloetion, an iterative

procedure is introduced. One can estimate the
initial mean~-square deflection E[q2] using
linear froquency wy through equatign (57) as

B(a3) - '_31".11 S (61)

“This {nitial estimate of E[qg] is ainply the

wean=square displacoment baséd on linear thoory.
It can now be used te obtain a refined estimate
of f1, through equation (53): nf « wg R CH
then E[q]] tu computed through equation (s as-

o2 » 230U

1 amlgead (62) :

. As the {tevative process converges on the nth
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e¢yele, the relations




r=}

n e
.".‘"‘

S ol wat

e e

B2 = %,3{%:%5 = E(a2_y]

ng =l s SBE[Q%,I] s a2, (63)

become satisfied, In the numerical results
presented in the following section, convergence
is considered achieved whenever the difference
of the RMS deflections satisfy the relation

B (64)

’J E(qf)

= |§_10'3

STRAIN AND STRESS RESPONSE., Once the RMS dis-
placement is deteyrmined, the strains can be
obtained from eqs. (1), (3), and (12). For
simply supported, symmetric laminates with
immovable inplane edges, the strains on the
surface (2 = h/2) of the plate are given by

A

? e -
%gtu-qf;yeos;—*eoo{

¢ » ¥, -
‘Q"'a;—[cmz'gzi%_-v ces%'l] (65a)

3 -2 "
] %gi?'q?tees%cogzé

, o2 ] M . - :
W“fqﬁwﬁﬁwﬂ¥'q (65b)
:;7 TG ‘-:‘Vﬁn = oln 1) (“tﬁ)

For mevable inglanﬁ adges, the last term in
equations (65a) and (65b) vanishes,

For clamped, symmetric laminates wich
immovable inplane edges, the straing on the
surface of the plate ave gliven by:

b2 2 2 -y
Fy:anr—z-[-z-cos—:—x(locosz—l"l)

2 12 f.:z 2mx '\*12 4
MR A,gzo:os—-m cosdI% . L o, 2ny

a - LA, a T2 b
: 208%, + An ¢?
*%cns%*m 0(':* )1': Tcosz—'ﬁmsﬂ
%2 “12""25)' * AT T a b

T A?Irz 4
* 3 % 2ty
léAgZ + ““Yz ¥ Age),z Y A?‘rl' ces == cos .lb

A7, v baf et
YT T L ll‘ cos 2nx [ 3
32 & GOAT RS WT STGAT v 08 5T cos jE e s

(66a)
b’ =2 any 2
h";'l'y'q-s-(l'cw-;-)cos-sx
R . Av

2Hav, o ape’)
. : i X o &
CALRC Sy Ay i i ¥

o 3o X, 3-‘&”“" ks 3
FERTF OIS

6“!2 N 415
+ W,W—ILF-’*‘.A arx 2
g 3 e COB ==3 ¢0§
¢ * L 3 Fes n' -8 B‘D

172 ¢
AY. & LAY
- H : : [ b}
OA”. 3“@"‘ 'GOG*_A.-L‘@OI-B:‘E]
(66b)

2 3 . :
g-,- e“ .q -';a t-ain I%‘ sin 258 7
XY
B LR
E tain 3-;=5 113 2;1’ »

=t ot S S L G oy .
. ﬁ,\g;_ .“E?ﬁ':; s .:.T)ﬁ".“gﬁ? sia "aj sin B2

e o . L
. A g(u?: S 38 YRS sin .2“*_ wig nbl

(66¢)

For movable &dglaue edger, tho lawt term in
equations (66a) and (66b) vaunishes.
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RESULTS AND DISCUSSION

Due to the complications involved in in-
cluding multiple modes in the analysis, only a
single mode approximation was used in this
study. The assumption for fundamental mode
predominacy is admittedly over simplified; the
conditions under which this is a valid approxi-
mation remain to be investigated. This single-
mode approximation was first presented by Miles
[20] and its use has become known as “Miles'
single degree-of-freedom theory." This approx-
imation is commonly used for all sonic fatigue
analyses [2] and a simple model sometimes helps
to give basic understanding of the problem.

Using the present formulatiouw, nonlinear
responses of symmetric laminated composite
plates subjected to broadband, random acoustic
excitation are studied. Both simply supported
and clamped out-of-plane boundary conditioms
are considerad. Two inplane edge conditions
cousidered are immovable and movable. In the
results presented, the excitation power spec-
tral density function is considered comstant
ov varying slowly with frequency in the vici-
nity of the equivalent linear frequency and a
representative, graphite-cnoxy with material
properties:

Ep = 17 x 10% psi  (117.9 GPa)

E; = 1,7 x 10° psi  (11.8 GPa)

Gyz = 0.65 % 10% pai (4.5 GPa)
Dy, = 0.30

is used in all computations. Mean=square dis-
placement, equivalent linear fraquency, and
mean=-square strains are dotermined for

[0, s45]); and [0. 245, 90]5 graphite-cpoxy
laminates of difterent aspect ratios and
damping ratios at various excitation spectral
denaities.

Figure 1 showa the maximum (center) mean=
squave deflection versus the spoetral density
parameter of excitation for square, simply=
supported, symmotvic composite plates with
[0, 345]), and [0, s45, 90], ply orientations
and with a damping ratio of 0,02, The mean=
square deflection of the immovable i{nplane
edies case {8 loss than that of the movable
adges: that is, as the inplane edges are
- pestrained, the plate becomos stiffor. Rosults
of the mean-iquare deflection versus fercing .
spuctral denaity Lased on swmall deflection
" theoyy are also shown,

Figure 2 shows the frequeney parameter
vorsus tean=sguare deflection for squarve,
simply=supported, sywmmotrie laminated composite
plates with the above ply orientations for a
damplng ratio of 0,02, The froequoncy pavameter

cerresponding to zervo mean-squary deflection is-

the froquoncy based on liwnear sceuctural
thoory.

107

_son,
"~ straine versua level of excitatioen,

The normalized mean-square maximum strains
at the center of the simply-supported square
plate with a damping ratio of 0.02 are shown
in figure 3. Results based on small deflection
theory are also shown.

Figure 4 shows the maximum mean-square
deflection as a function of the excitation
spectral density parameter for square, clamped,
symmetric composite plates with [0, #45]g and
[0, 45, 90]; ply orientations. The mean-
square deflection of clamped plates is general-
ly somewhat less than that of the simply
supported case. The results on small deflec-
tion theory are also presented,

Figure 5 shows the frequency parameter as
a function of mean-square deflection of square
clamped symmetric laminated composites with
the above ply orientations. The frequency
parameter corresponding to zero mean-square
deflection is the frequency based on linear
structural theory,

Figure 6 shows the normalized mean-square
maximum strains at the edge of the clamped
square plate with the above ply orientations
and a damping ratio of 0,02,

The effects of aspect ratio on mean-
square deflection are shown in Figure 7, The
example is for a clamped symmetric laminated
composite plate with a [0, 245], ply orienta-
tion and a damping ratio of 0.05. It is clear
from the figure that an increase of r will
cause a "closing" of the curve. This occurs
because as r increases the pancl becores less
stiff, and the mean-square has to be finite.

Figure 8 shows the effocts of aspect ratio
on the maximum mean-square strain for clamped
{0, 245]), laminated composite plates with a
damping ratio of 0,02, The aspoct ratios
investigated are: 1 and 2,

Pigure 9 shows the effects of damping

“ratio on the mean-square daflsction for

clamped [0, 245), laminated ccmposite plates
with an aspect vatio of 1, It {s clear from -
the figure that the precise determination of
plate damping is important.

The aceuracy of the analytical method is
{nvestigated thru a quantitative comparison
with experimental reaponse data for [0, #45)
graphite-epoxy laminates from a pravious Air
Force sponsored program. Details of the
experimental program can be found in Reference
12, Table 1 lists the resultas of the eompari-
Shouwn are the analytical and experimental
The com=
parison demonatrates that a better corrslation
between cheory and oxuperiment fs achieved when
the lavge defloction effect fa fucluded in the
formulation, - -
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CONCLUDING REMARKS

An analytical method is presented for de-
teymining large-amplitude response of symmetric,
laminated, roectangular plates subjected to
broadband, random, acoustic excitation. Govern=
ing equations in terms of stress function and
deflection function are derived, The formula-
tion is based on the Karman-type geometric non-
linearity, a single-mode Galerkin approach, the
equivalent linearization method, and an itera-
tive procedure, Both simply supported and
clamped support conditions with either immov-
able or movable inplane edges are considered.
The large deflection theoretical formulation
wvas verified through direct comparison with
experimental results, Improvement over linear

“theory can be achieved when the large deflac-
- tion cffect is included in the formulation,

The solutions developed herein may be usad in
the detormination of RMS deflection, RMS stross/
strain, and equivalent linear frequency, in
conjunction with failure S-N data, may bo used
for the estimation of service life.
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DISCUSSION

Voice: I'd like to comment that actually the
lire would be affected by much greater than two
to one because the S/N curve is fairly flat., In
other words, a small change in stress or strain
gives a tremendous change in life. So it would
be a tremendous difference between the linear
prediction and your predictions here.

Voice: How many modes were excited signifi-
cantly in your acoustic test?

Mr. Wentz: ‘There was Just really the one mode
at the lower level for the panel that we looked
at. And as you would increase the level 3DB at
a time, more modes would come in to play
arbitrarily. At the higher level, as each mode
appears when you increase your excitation, the Q
of the peak acts as a hard spring oscillator.
The peaks Just really broaden out, and this
brings up another problem in trying to use
linear damping theoriea to determine the
damping; you can't use a bandwidth method since
there are other factors.

Voice: TYou made your analytical calculations
for the fundamental mode only?

Mr. Wentz: Yes.

Volsn: Are you comparing the multiemode test
respanse wi.h  the g3ingle mode analytical
predictiona?

Mr, Wentz: Yes.

Volgat Was that part of the error?
"Mr. Wentz: Yes, at the kigher levels. Ve are
in the process of {ncorporatimg multi-modal

ragponge and looking at various modes. You have
g89e rore cemplexities besause you ecan't Just
asaune ond value of damping. You have a
differont damping ratlo for each mode. So wve
are extandlng this work to try to ba more
qeeurate. W wvanted to do a fundazental

nm

analysis and see where we were.

Voice: I heard you mention that you have
single mode response when you displayed the
frequency response of the measurement.

Mr. Wentz: Yes.

Voice: How can you Judge the modal response;
there were so many peaks?
Mr. Wentz: There were peaks, but they were 25«

3048 down in amplitude f{rom the main response
mode.

Voice: Was this a transfer funtion?
Mr. Wentz: flo. This was a power spectral

density function.
Voice: I think you would have better luck
getting a transfer function in steel,

Mr. Wentz: Yes, Classically, in sonic fatigue
ve uge the Miles single degree of freedom theory
vhich Just assumes that damage comes from the
main fundamental response mode. There are other
modes. There were other peaks, but at the lover
levels, Theoe peaks were at a level far enough
down that they wouldn't affect the damage. At
the higher levals, it vas very broad.

Voigce: Why is it so difficult? You might have
gome reasons. Why can't you get vhite noise
evcitation?

Mr. Wentz: There are noise generators that do &
miach better Job.

Voice: Generally, not at those high levels.

Mr. Wentz: Yes, but I have seen a fev spectra
that are quite flad, B
Vojea: Bettert

Nr, Wontzt Yes.




DYNAMIC CHARACTERISTICS OF A NON-UNIFORM TORPEDO-LIKE HULL STRUCTURE

Azriel Harari
Naval Underwater Systems Center
Newport, Rhode Island 02840

here,

The vibratory response of a torpedo-like structure is investigated
The torpedo hull is characterized by a long cylindrical shell
where the length-to-radius ratio is large.
built from several sections that may differ from each other in
thickness and material properties.
various loading conditions is found and the results presented,
Reduction of the vibration level of the torredn hull at the
frequency band of interest can be accomplished only after the
responge of the structure is well understood,

The responte of the structure to

The cylindrical shell is

INTRODUCTION

Self-noise is a major handicap to the
operation of a torpedo because noise generated
by vibratory sourcas on the structure
interferes with the functioning of instruments
attached to the shell, The excitations of the
structure are due to various sources such as
enginc vibration, propeller shaft excitation,
and hydrodynamic fluctusting forces on the
shell, The torpedo shell is cowposed of
ssveral aactions, The various segments of the
torpedo hull may differ from each other
‘structurally and can be made from different
materials, Structural discontinuities such as
stiffaners discentinuity and joint
dtncont%nuisy wvare studied previously by the

_author.'1€s3" pifferent geometric and
material properties for the various sections -
and end plates are studied here., The
structural dincontinuities introduced by
cylindeical sections of diffeorent geometrie

. and materia! properties have an effect on the

vibration of the hull and on the wransmizsien

of power aleng the shell. 1In order to treat

~ and control the level of vihration, it ia
first vequived to knov the dynamic respense of
the structura in the frequency band of

_interest. The responde of the tvansducer
arvay panel to vibeatory forces on the
steucture ia of partieular jntovest,
Consteained layered plates and shells can he
used sweleetively for several sections of the
hull to reduce the vibeation lovel., In oedee
to dasigh the proper constrained layerad cress
saction for cle shell sections and plates, the
predominane vibrational vavelengths, the wear
fiold woluclona, and other charactervisties of
the shell vibration a: the frequancy band of
interest wuct be known, The vibrational eada
near the {nterface hotuoen the nectiony of

_difforent waterial properties is of paveliculae

faterest. the analysis here considars a

cylindrical shell with end plates. The load
is arbitrary and can be placed at any point on
the shell or end plates. The various asections
of the hull can have different structural and
material properties, Since the primary ’

.interest of this paper is the shell vibration .

at high frequencies, fluid mass loading can be
neglected, Radiation damping affects the
magnitude of the vibrational modes but not the
relative transfer impedance. The analysis
conducted here is for the in-vacuo vibration -
cf non-uniform cylindricel shells with end
plates. PFor the sake »f completensas and
comparison the mode shapes for low frequencies
and for unifors shells sre aléo included. '

‘CYLINDRICAL SHELL ANALYS1S

Consider a thin cylindrical ashell of
thickness h and mean radius a. The widsurface

. of the shell {s described in terms of an %,

113

0 coordinate system. The x coordinate {s
taken in the axial direction of the shell and
the 8 coordinate in the circumferantial
direction, The components of the midsurface
of the shell are designated by u, v, v (Pig.
1), The equations of shell motion govevning
u, ¥, and v are e Sanders-Koiter®rd ghell
equations, The equations ave writton as
followst i

i R .
“ﬁz +3 (e 0)(1035)u80
0[¥l0v)-%n-wh]%9
© %(l - “"“kso . uvt

cota2e)t - i = 0,




Bu+v>-%1-v»}%e

1 9
+ -2-(1 =)l + Zb)"g{, + (1 + b)vee

1
*b(i)(B - v)wgge + bweee -

- p(a2/E)(1 - V¥ =0,

]
(1
1
- qu - b‘f)(l - v)ueeg
1
+ b(i)“ - \))v&:e + bvges ~ Vg

'&b(w&:EE * Vooee * 2"{560) +w

+ p(a?/EX(1 - v3W =0,

vhere
§=% (g zangl), (g
3 el n2
Egg ) ()= 5{( Yo b= 502

E ‘s Young's modulus, Poisson's ratio is de-
o noted by v, p is the mass density, and h is
‘the thickness of the shell,

e The displacements w, u, and v may bde
expanded by Fourier series :

2 wucos(nd)

'ﬁfO

[ ] n‘
Z: upcos(nd) ,

.

- wE,8,t) =

L e - (2)

v({,9,t) » Z vpein(ad)
a=0
“an the elrcumferential & coordinate diree-
tion,
© - lowing formt

gl ,c) # cﬂeap(ht + Pnl,‘)», '

“ugllat) w Chexpline o PE) (3

vallst) = Cq euplive + P4b) |

wheee W is the eircular frequeney and vhere
Cus Cny and € are constants. Substituting
Bqe. (2) and (1) in Bq. (1), one obtains three

howogenaous slgebraic equations-on the canstants -

Cqv Cay Cay the determinant of which when set to
goro yields a fourthworder equation on Py,

The solution is then sought in the fol- -

P8 + A3P6 + AP + A1P2 4 A= 0 (4)

Eight roots,
(Bedp = (&dp + (Wedp + K = 1,000, 8

are obtained, thus yielding eight independent
solutions, Using Eq. (1), the constants Cg

and Cp” can be written in terms of constant Cy.
Since the analysis is done for every n component
separately, it is convenient to drop the sub-
script n from subsequent expression and dis-
cussion, with the understanding that the analy-
sis is for particular n mode, Exp(iwt) is

also omitted from all subsequent expressions.

The solution can be written now ast

p,E

p.b
w-clel 2

+ sressIIIEIIOETISIIIRETY

+ cye
p b
#ceaa

p.E p.b
ue" clU(Pl)e 1 + cz'\f (Pz)e 2 * eeeesne

pb
* ceﬁ(Pa)e 8 (s)

pb X4
v OIV(PI)Q 1 + czv (Pz). 2 * sesesne .

£
. cav(Pa)QPa

vhere U and Vv are functions of Pe. w, and tha
shel) geomotric and material properties.

Onee the displacements are known, the
stress=rosultants can be ocbtained. The stress
resultants associated with the boundary § =
constant are as followst : o

- nx

» - .2.
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CIRCULAR PLATE ANALYSIS

The solutions to the problem of bending
and extensional vibration of plate arc un-
coupled and can be solved separately. The
differential equation and solution for the nor-
wal displacement w of the plate are as follows:

Eh3 Phy + Py 3w

P11 I =0 6
12(i-v?) ae2 (®
wir,d) = : walr) cos (nd) eiwt (7)
“-
Vg " [A (k) + BYq(kr) (8)
+ Clplke) + D Kn(kr)]
w2
vhere k4 = —— 12(1-v2) (9)
Eh

and A, B, C and D are constants.

The differertial equation for the
extensional vibration of the plate is as fol-
lows:

BVPus ' s PP uap i €10)

where u is the in-plane vector displacement and
where

L1} . )

A YY1 A " Tl (=)’
= B »

L 1§ D)

- The scaler and cross product of Eq. (10) yields:

C 22
viwfgnguwh%Eer.

wtv.magzuw) %@,

77 Subltituting [T ol9t {n Eqa. (11) and (I!), '

one gets the Tollowing differential equation:

W2 ek (R yM w0, (19
(V2 o &' (Y u M =0, - (146)

whete W2 » % Cavlig?,

wle 3% Clov) wl |
Lat U and V be the components of the “.h
placement veetor in polar coordinatest '

B e Uey ¢ Vege The displacemenit veetor
can be enpanded, as defore by Pourier sevios.
The nth eomponents of the displacement
vector can by writtea am

(1)

Q)

Uy = Up cos’nd), Vu = Vy sin(nd),

The solutions for V ¢ u® and V x u* for the ath
component of the displacements can be written
as follows:

U, 1 1 9V,
T ‘vt @

+

- [A’; J (ke) + A7 Y (kr)] cos uf,

2
vy, 1 1 Y,
3 ‘Y'Y W
- * ] \d ' : !
[Bl J(k'y) + B, ¥, (k r)] sin nf, (157
From Eq. 15 the following expression for Uy
and V, can be obtained:
d\’n(kr) dvn(kf) Jn(k.f)
Yo '[}x Ko 27 *Hry ¢
Yolk'e)
n —2 ] cos nd,

) Jn(kl‘) Yn(k\')
Vn'-[A‘n—r *I.zn—r' ¢Bl

dYlk'r)
lz—é—: ] dn»na. )

dJplk’e)
we— *
dr ’

{16)

* FORCED VIBRATION

_end plates as shown in Fig. le.
_ expanded by Fourier series around the

The structure is loaded by harmenie in
time force acting on the cylindrical shell and.
The load ie

circumference, The eylindrical shell is seg~ -

. mented at the point along the shell where
" there is a change of thickness or material

properties and at any point on the ashell where
the l1oad is applied, The boundary condition

" f{eposed at the interface between the segments

wvhere no ferce {e deing applied {s that the

" displacements and the atress=resultants b@
" continuous across the interface, ul =

0, ub - u‘ w @, vb=ykasg, uﬂ‘-u:- 0,

bt n

Q‘i Ft'

... =0, N -“‘.0.

s N‘ % 0 vhore the superscripes “LY and

“a% refer to the segment to the left and to
the right of rhe interface, The boundary

-eondition at the puint vhere the liae force s

applied is the same except for the discon-
tinuity condicion of the appropriace
stress~resultant. Por normal foree, gl =
For axtal force on the

eylindrical shell, W- - a: * By, stes The

- boundary condition botween the ¢ylindrical

shell amd the plate {3 wiwilar to the cie
betwaon the dagmeats emcapt that the




appropriate elements of the shell and the
plate have to be matched, i.e., we = - up,
etc., where the subscripts ¢ and p refer to
the cylindrical shell and the plate
respectively,

The overall boundary condition results in
a set of non-homogeneous algebraic equations
for the constants ci{. The number of unknown
constants is eight for every cylindrical
segment and four for each end plate. If the
load is on the end plate, the plate is
segmented, The outer plate segment has eight
constants, and the inner one has four
constants. Once the constants are found, the
displacements at any point on the structure
can be found by using Eqs. (5) and (16).

NUMERICAL ANALYSIS

The analysia discussed here is applied to
2 cylindrical shell with end plates as shown
in Fig. 2. The length-to-radius ratio {s L/a
= 12, and the thickness-to-radius ratio for
the shell and end plates is h/a =-0,03 except
when indicated otherwise. The shaded shetll
soctions shown in Figs. 2b and 2¢ can have
different thickness and material properties.
Poisson's vatio is aqual to v = 0.3, The

frequency paraweter is T 2 an fp (1=vd) ,
P

The force paraacter-is - o 10f6 whore P_is'

the magnitude of the harmonic in time line
force applied uniformly on an ave b of the

etreunference (% = 0.1). Only partial results

are praseated due to the iarge variety of
eases, Frequency sweeps were conducted for
- saveral loading and structural eounfigura=
tions.. The results are prosented in Figs.
3«10, ‘the normal displacemant v and the axfal -
{radial for che plate) disnlacewant u ave
plotted eeparately on an outline figuve of che
" structure. The combinzd deforwation of the
structure due to the displacements v and u {s
plotted enly for » few eaers as shown in Pigs.
“5a and 95, This is because the differeat
scales for the wteusture and the awial
 displacemsats frequently cause ynseceptable
disrortion. The plotting scale is adjieted

. for svory froquency pavametés Beeauss the

wagnitude of tha responze can vary by 3 larpe
wagnitude fer different values af the freduency
pararoter. The adjustwent ly wade such that’

© . the platred efdinaee of the wakimum Gigplaces

veot {s 8 fised valie for all pleots,  The maxi=
" aigétaeénentntéﬂféaius tatia gi 404 gﬂ are
" typed bé!éw caeh Tigure fae the é;!anﬂfiéé?
Cshell and the tvo end plates, whote 2& is' the
Sanimum displacemont=tasvadiue fdt‘@dfof the
eylindeical shell and ﬁﬁ §8 the waximus diss-
pﬁﬁtdléﬂl‘to‘;ﬂaiui ta:i@ for ead plates. VFor

830, v {s unteupled from o and . The andes
asneeiated vith v (0%0) afe pure torsicaal

modes and are not discussed here. Figs., 3-6
present the response of long uniform shell
with end plates (Fig. 2) under various loading
conditions. The location and direct.on of the
exciting force, on the cylindrical shell or
the end plates, are marked by an arrow on the
outline of the structure, Figs, 7-10 present
results vhere non-uniformity of thickness or
material property were introduced. Figs. 3
and 4 show the axisymmetric n=0 response of
the structure. At low frequencies the
response of the structure under normal force
is limited to the close neighborhaod of the
force, Fig. 3a, As the frequency increases,
the vibrational mode changes to an overail
bending mode, Figs. 3¢ and 3d. Under axial
force the shell vesponse, at very low
frequencies, is primarily translational, Fig.
4a, The mode changes to the first accordion
made of the shell and bending mode af the
plate as the frequency increases, Fig. 4b,
The response of the shell changes te an
overall bending mode as the frequency gets
higher, Figa. Ac and 4d. The value of the
poritive voot for p¢ increases with the
frequency. The effecta of the nearfield
solution at high frequencies are thus limited
to the close neighborhood of the fovce., At
high frequencies the boundary conditions at
the location of the force and between the
shell and end platee do not have eignificant
effect on the character of the wode shape,
Figs. 32, 3d, 4e, and 4d. Figs. 5a-%¢ show
the n=l response eof the shell to a normal line

. forge. Figs. 6a=6c ahow the n=2 response of

the sholl to a normal line force on the .
plate. The exciting force, for the examples .
shewn in Figs. 7-10, is placed at the eenter
of the ahell, and non-uniforaity such as

change of thickness or waterial is wade on
part ef che stvuetue, Figs. Ta and b shov
the a=d respouse of the shell shown in Pig. 2b

© whore the thickuess=to-vadius ratlo for the

sholl wertion en the right side (shaded) e .
u/a=0.06, while the ratio for the rest of the’
struetave {s h/a=0.0). Por {ntermediate and

- high frequencies, the nearfield solutions do -

not have any significant effect. As can be
‘zaen, the sheli sections vidrste in two
different vavelengths in sccordance with the
thickness of each sectlon. Figs. 8u-83 show
the na0 rasponse of & hull vhere the
thicknens=to~radius ratio of the end plate on -
the right tFig. 2¢) {s hiasd,2, whiila the
ratlo for the raat of the structure i» :
Wawd.03., Figs. 9a-94 show the u=0.2 respense
of -a shell vhere the wadulus of elasticiey far
the elight segment (Fig. 2b) ix theee times the
value for the vest of the structure. )

7 Thickaesscto-radius ratis is W/as0.03 tor the
. eylindeical ahell and W/as0.3 far the end
plates. Pigs, 9229b show the a=d raspoase,

and Figs: 9e=94 show the ns2 respoase. Flgs.
102-104 show the 60,2 reaponse of a shell
where the eodulus of elasticley for the vight
seppcat (Fig. 2H) s half ethe value for the
rest of the structure, The thicliness=tos
vadive estin is hfa%0.03 tor the eylindeical

_shell aud h/as0.2 fer the end plates. Pigs.




10a-10b show the n®=0 response, aud Figs.
10¢c~104 show the n=2 responsec.

CONCLUSIONS

The dynamic response of a long
cylindrical shell with end plates was found.
The vibrational mode shapes for unifores and
non-uniform shells are presented. Thickness
and material non-uniformity were considered.
The information obtained here can be used to
control the vibration level at frequeacy bands
of interest by introducing constrained layeved
end plates, constrained layered shell
sections, material with damping properties, or
by stiffening several sections of the
structure.
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i SUMMARY
o The vibration and acoustic nearfield of thin aluminum spherical shells were investigated
analytically and experimentally. Two such shells with thickness-to-radius ratios of 6.4 X 10~3
';i: and 13.4 X 10~3 were excited by an impedance head at the apex, simulating a mechanical
iﬂﬁ point excitation. The driving point admittance frequency spectra of the shells when excited
gl:l in air were recorded and at cach maximum, the mode shape at resonance was plotted. These
a:. measurements were repeated when the shell was suspended in a large water tank. The driving
Wy point admittance of the submerged shells was recorded. The mode shapes at resonance were
) plotted by use of a small hydrophone that measured the nearfield pressure of the vibrating
] shells, The measurements were carried to high frequencies (ka = 30).
K; A parallel analytic prediction of the amplitude of the vibration, the nearfield and far-
N
Az fleld pressures were made, Basically, a thin shell theory with bending terms was adapted for
:t” the equations of motion. For vibration in air or in vacus, the solution was obtained by the
s normal mode approach. The predicted resonances were compared to the measured ones and
b found to agree within 8 percent for mode orders up to 32, For vibration of a submerged shell,
. un iterative technique was used to calculate the resonances of the submerged shells in water,
. The predicted resonances were also found to agree within 6 percent with the measurements,
To predict the mean-line of the driving point admittance, use of Skudrzyk’s mean-line
s theorem was made. This theory requires the knowledge of the resonance density of
A vibrating spherical shells. Expressions for the resonance density of spherical shells were
-’,’, developed in the low, medium, und high frequency ranges. The predicted mean-ine of the
"t driving point admittance vibrating shell was within 3 dB of the measured mean-line,
L .
) k:;! INTRODUCTION elustic scattorors Is the result of the rigid bedy scattering and

,‘g i ‘ : radiation scattering. In another paper [6), he studled the

The study of the vibration of o spherical sholl sub-
merged in an infinite acoustic Muld medium is the maln
objective of this paper. where the mechanival and acoustical
envrples are coupled by a fluld reaction (1], The vibration
of u spherical shell has beon studied by many authors
{2=9]. In a paper “On the Vibrations of a Spherlcal Shell,"

" Lomb {2} has investigated a-membrane spherical shell for
axisymimetrie vibration, and pointed out the existence of
two Infinite sots of normal modes, Baker {3) has expanded
the work given by Lamb, and demonstrated experimentally -
the existence of normal medes predicted by the theory.
Ruintns [4] stugdied the bending effecta on the vibration of

_ o sphierical shell in vacuum, and labeled the lower branch as

bending modes, Wilkinson | §] showed that there are ihiee
branches i the frequency spectrum whea the equations of
inotion of closd spherteal shells include the effects of trans
verse shoar deformation and rotatery inertlu,

“onsidering the vibration ot & spherical shell sulmerged

i a Nuld medium, Jungere | 1) examined the sound scatter:

ing.of a metmbrane elastic sphevical shell, Insonificd by o plans

L agoustic wave, He coneluded that the sealtering field of all

same configuration but excited by a polint force, where
he demonstrated the radlation loading on an clastic shell,

. Huyek [ 71 studied the vibration of the forced, axisymmetric

spherlcal shell in the light of the bending theory in an
acoustle medium. He coneluded that the resonance frequoncy
is sensitive to the parumeter (hya). especially for large mode
nimbers n, and the resonance frequency Increases as n n-
creases, no mutter how small s the ratlo (h/n). Lauchle [£]
extended the work of Junger, and demonstrated the inter-
action of a spherleal acoustic wave with an elastie spherical

©sholi in Muid media, Skudrayk {9] has doveloped spproxi-

mate expressions for the resonances of o spherival sholl und
new expressions for the forced vibration amplitudes.

THE BQUATIONS OF MOTION

In this section, the dynamical sesponse of an excited

- olastie shell Is constdered where the applied forves, the
displacements, ete., are time-dependent. To derive the equa-
tions of motion for 4 vibrating shell, Hamilton's variational
prineiple is applied, The variationa) intogral requires expros.




sions for the kinetic energy T and the strain energy V of
the system as well as the external forces as derived from a
potential function Q. Hamilton’s principle states that:

t2
5[(T-V+Q)dt=0, 0))
4
where t| and t7 are the initial and final time states, respective-
ly, of the system. The symbol & represents differential
variation. Substituting the strain and kinetic energies and the
potential function into Equation (1) one obtains the coupled

equations of motion of a spherical shell in terms of time
harmonic displacements U and W, see Figure 1:

LU + Ly, W = 0 - »h Q% @
and

-yl
LU+ Ly, W= (1002w - 125 2 e, @)

where the operators Ly, Luw' Ly Lyw 2re given by:

2
Luu=-(1+B)((l-nz)y‘z:—z(l-nz)%+(l-v)}. )

Lyw = 0 =02B(K1L-0) g - (L40) g 40 G 920,65)

Ly == 1801 =)= (140)) (1 - - 02 £

(1-n2) 6
and

Low =899 48010 92 +2(1+v) , ™M
where

2.4 2 .4 .
9 dn (l‘ﬂ)m'" v B eos d '

2
Q2upwhll = ‘—:32- is the normalized frequency,
_ @, |

Cy
W i the ring frequency

Gy /;f_; , B=h2lady12, ®

and v I3 the Polsson's ratio, E I3 the Young's modulus, a is -

the radius of the shell, U and W are the tangential and
radial displacements, Py is the applied radial force, and Py is
the scoustie surface prossure. )

For this problem, the tangential and radial displace.
ments can be expressed in terms of Legondre polynomial of
degroe n as follows:

= dP ()
Um =Y U, (- ——
n=0
)

o0
UOEDYRN NOW
n=0

and
- o0
B=D PPy, B=) PpPi(m. (10)
n=0 n=0
Then, on substitution of these two equations into Equa-

tions (2) and (3), one obtains two algebraic equations in
terms of Uy, and Wp:

L= 02-0 4 Oy - 190 Uy

an
+{80g =10 + (140 Wy = 0
and
B (1 =2) = (1 +8)-82,2) Uy + (612
=B =N, + 201 +0)-(1 -0 QY W,
1 -2 2
S e=gp 8" (P Py (12)

where Ap=n(n+ 1), Pjy and Py, represent the modal
applied and roactive pressures, respectively,

R(‘WQ.@) *

Fig. 1 = Configuration of the spherical shell in ihe
spherical coordinate systwmn .

T R A 35 - R £ A F R N SR s Y R W A MO A RPN S D BN o L MAS e AT A A W w i R WS R A W ad A AR W 8RR R Y M AT RS B A SRS A LA R A



NATURAL FREQUENCIES IN VACUO AND IN FLUID-

The natural frequencies of a free vibration in vacuo are

the roots of the following equations:

(=222 Q8- (BN, 2+ (1 480\, + (1 +30)
-8(1-9)] (1-v2) Q2 +pA 3 - 4N, 2+ [B(5 - ?)

U=l A 20 +H 1 =0D) = 0 . (13

This is a quadratic equation in §2 with only two distinct
positive roots for each mode number n. The larger root of
each mode belongs to the upper branch, and denoted by
Q. The smaller root, Sy, belongs to the lower branch. The
roots Qpn and Qgp are the natural frequencies of the
spherical shell. For n =0, there is only one positive real

as thin shells for shell theory of deformation, but will be re-
ferred to as “thick” and *thin” shell, respectivcly. It is clear
that the natural frequencies of the lower branch for membrane
theory, 8 = 0, are independent of the shell’s thickness, while
the natural frequencies of bending modes, for g > 0, vary
with the thickness. However, the upper branch frequencies
do not change significantly with 8. For a thin shell, where the
ratio hfa is very small such as the ratio 0.0064 shown in
Figure 2, the membrane theory may be applicable at low
frequencies or for small values of the mode number. It is
interesting to note that £ approaches unity when the

mode number goes to infinity for = 0. Different asymp-
totic approximations to the roots of Equation (13) were
obtained as follows:

Ag-2

2
an NW N <1 N (143)

root:
3 2 g2
Qo = T3 Qf, ~ 1 :2 +1, a>! (14b)
This frequency represents purely radial motion, which is re- and
ferred to as the “breathing mode.” This mode's elastic energy A +143
1s due to extensional deformation only because the shell QZ & ._“_._v a0 (14c)
vibrates only In the radial direction, and the radius of curva- hn 1=l ! ’

ture of the shell remains constant, The natural frequencies of
duralumin shells of radius a = 8 inches and thickness h = 0.1069

"

Y,

. @ SO0

‘t
l‘
4

inch (h/a = 0,0134) and h = 0.0514 inch (h/a = 0.0064) wore
computed and plotted in Figure 2. Both shells are considered

Vo VTN LE g UL i O A )
RO OO U R IR MO M SO RO ONNR AR OO U RO WY

widl wuMmte

Eig. 2 - Dimensionless frequency 3 for various modes
whep spherical shells are excited In vacuo
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For a thick shell (h = 0,1069") or thin shell (h = 0,0514"),
Equations (14b) and (14¢) predict the natural frequencies
with 10% accuracy for n» 6 for the lower branch and

n 3 for the upper branch. These approximations are
better than those given by Feit and Junger [ 10] which
eliminates the unity in Equation (14b). The unity in the
formula for the lower branch represents the membrane
energy and the first tarm represents the bending energy.
Thus, neglocting this factor, the 10% accuracy can only be

3 obtained for n 20 for the lower branch. If n islarge
e Exaet enough, the unity can be neglected and the shell resonances
e — approach those of a plate of equivalent surface, i.c., the shell
troee v Arnroxinate resonances fall in the so-called “plate range,” where the
b ) curvature effects are no loager important, When < |,
boper Branch the lower branch roots given by Equation (14a) are within
- " 5% for n < 10, These fraquencles are shown in Figure 2,
g o ka The modal mechanical impedance of a spherical shell
g . 0.013 for a radially applied force can be obtained by setting
e Lover Mranch Pry ® 0in Eq. (12). The inechanical impedance ls
»
g 3 P __Pin wh Ny '
F . Tow " -—T—‘ 15
Q:* 844 ma T ST W T e Dy ( )_
o 9 where
< i Ny = (1= 0t (BN 14 po,
1 : .
i
’: o L Etis by shaash Rinay Saiths SEEEE) S e S euan e |
"\ L0 4 & KO0 M e W AR 2 2

+1+w=p(1=-0) A=ty a2eprd a2

+(0(5- 2_)40 i) A =21 +0) (1 =0d),




and

\

D, = ~(1+HN, +(1 =») (1 +p)+ (1 -vH) Q7 |

Wher $=0, Z, reduces to the modal mechanical im-
pedance of a membrane shell [8]. The modal ratio of the
tangential to radial displacement amplitude Uy/Wy, is ob-
tained from Equation (11) as follows:

U B -(1=-»)+(1+9)

=

n
= )
Wn o (1B =1 -] -(1-»}) 2

which depends on the excitation frequency §.

To obtain the resonances of a shell submerged in a fluid,
one can write the equations of motion in terms of generalized
coordinates. The displacements u and w are expressad in
terms of generalized coordinates as follows:

w= Uy @y ®
and
ey W, 0)a, )

where Uy, and Wy, are the mode shapes of the tangential and
the radial component of the displacement and gp(t) are the
generalized coordinates.

The equation of mation on the generalized coordinates
becomes:

K, Jm
. KO HSy “’nz
+ +
ay M. 9 M. 9n
|+ a0 1+ 0
us, M
.
f Wy Pipdn
-]
L ) .
M T an
an ;
5] (wmfs |

where K represents the damping factor, gy, and My, are

- the resistive and reactive components of the modal aceustic

impedance Zy;, :

p) {ka}

spo=lwM, (18)
h”n). (ka) an an

Ly

" 4 15 the surface muss density and Sy, s o shape factor which

appears In the modal mass My,

. e
ITSELISI Y 'R Y R NP
M ST | CelW TN B M

AR R MANANYA VTR AR A VAR ERTAA A S S 2010 AN AN A I I ML AU A T SRR A IS AR s I AL S8 ST At SLEA iy )

with 8, =, (Unlwn)2 + 1 and M is the total mass of the
shell. For a freely vibrating shell in an acoustic medium, let
qp = A; exp (-iw nt)s with the natural frequency of the
submerged shell being w ,, in Equation (17), which results in a
an expression for w , as:

2 2
() w
- ) n - n
wn = Man = 1+MR ) (20)
{4+ =——
BS,

where wp, is the natural frequency in vacuo, and the factor,
MR = Man/uSy, represents the ratio of the additional fluid
virtual mass to the unloaded shell modal mass.

1t is evident from Equation (20) that the resonant fre-
quency of a submerged shell is affected by the virtual mass,
Mgp, and the modal mass, My = ISy, In other words, it is
determined by the mass loading factor, MR, The virtual
mass, which is a function of the frequency, adds to the inertia
of the shell. The contribution of this mass to the total mass
of the system depends on the acoustic characteristic im-
pedance pc. The modal normalized acoustic resistance,
ran/oc, and reactance, Map/pa, are computed from Equa-
tion (18) and plotted in Figures 3 and 4, vs the nondimen-
sional frequency ka , respectively. The modal reactance
increases with frequency and then decreases rapidly toward
zoro as the frequency increases. It means that the virtual
muss is low at high frequoncies. The nomalized modal
acoustie resistance increases from zero to peak value before
it roaches its asymptotic value of unity for high frequencies.

L i 1 |

ACOUSTIC RESISTANCE
3

G B2 &4 06 & LD L2 L4 LE LY 20
1 L 1

Il

s

: . TIRP==T>TTTIm
ao i 10 1. 00 10, 08 104, 00
DIMENS 1ONLESS PRLOUENCY CKA)

Fig. 3 - Noanmalized acoustic restitance curves, RetZylpe.



X

4
E
¥
.’-‘.el
N
5
3
3

.0
1 i 1 1 !

ACBYSTIC REACTANCE
1

L2 BLE 0.4 L¥ OLé L7 D.¥ MY

|

1

oo ot

F

001 010 1. 00 10. 00 100. 00
DIMENSIONLESS FREQUENCY (KA

Fig. 4 — Normalized acoustic reactance curves, 1,(Z.)/pa

The natura! frequencies of a submerged shell @ p are
obtained from Equation (20) by uso of an iteration tech-
nique, since the natural frequencies in vacuo, w,, are already
known. These are plotted in Figures § and 6 for the upper
and lower branches, It is evident that the submerged shell
natural frequencies of the lower branch are lower than those
for a shell in vacuo (or in air). For the light fluid (air) load-
ing. the mass loading factor, MR Is negligible and hence the
resonances in air are very close to those In vacuo, For the
heavy tluid (water) loading, the mass loading factor, M R
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Comparison of sphorical sholls in water with that in air

increases up to four times the mass of tho shell for the mode
shapes of the primarily radial modes of the Jower branch

(U, /W) < 1 (strong fluid coupling) excopt that (U,/W,)

= 1{§2) = 0) for the flrst modo, Thus, the natural frequen-
cies In water are reduced significantly for the lowor brunch
at Jow mode numbers. However, when Mg docreases to loss
than unity for high mode orders of the lower branch (higher
frequencios), the natural frequoncies in wator are slightly
decreased from those in alr, For the mode shapes of the

~ upper branch, which are primarily tangential (U"/Wn) <1

(weak fluid coupling). the virtual mass of the accelerated
fluid is nogligible,

THE RESONANCE DENSITY OF SPHERICAL SHELLS
AND THE MEAN LINE OF THE DRIVING POINT
ADMITTANCE

i order to obtain an approximation of the shell's
characteristic admittance, a study of the spherleal shell's
rosonance density Is necessary, T lw resonance density l i)
Is defined as:

e
i
gl

A dll ;

where ‘w {5 the rsonant angular frequoncy and Cy = (B/p,)*

r,‘p-‘.lp

.': p ‘__(: ‘ ‘.~ % - ’ -
SEtat Vb Asd “EL N.nnnnhi.c ﬂ:_' L\L S, 4 :P u él. W) n L s'in'l.%* W :‘ h‘l.att




By differentiating Equation (13) with respect to mode number
n, the resonance deasity is expressed as:

dn 4(1- vha2-2,
a?i E=1 SZ 2 ]
a,Q2° - by

22)

where

ap = Qn+ (1 +B+2600) .

2n+ 1) [36A2 - 86, +B(5 - »2) + (1 -»2)]
" ¢ -9

and
¢ = 1430=8(1-»)+A, (1 +vﬁ)+ﬁ?\,2l

At low freauencies or in the membrane range & < 1, the
parameters in Equation (22) can be approximated as
follows:

ay = (n+l)

by = (2n+ 1)
and

o % (143041 . (23)

Then, Equation (23) with n and A, substituted for
Equation (14a) can be expressed approximately as:

a‘%.,__:.ﬂsl_ ., Q<. (24)
a-ad/i-a%

which is independent of the shell thickness, because it Is for
the membrane range. In the membrane range, the resonance
density increases as 2 increases [see Equation (24)). The
resonance density reaches a maximum ([see Equations (22)
and (23)) when  is given by:

3pNE
1ev?

Thus, the maximum resonance density Is given by:

0l

+1 . - (28)

g‘&‘ ~ 0433/3% .

1t Is quite clear that, in goneral, the maximum point is not at
£1= | excopt fora membnq‘: shell, when 8= 0. Ducto
Introduction of the term A5 | the maximum occurs at

£1> 1. Actually, the resonance density Is an inverse slope
of the frequency curves shown in Figure 6,

‘Thick shells’ natural frequencles differ from the mem-
brane mode at a higher frequency than thin sheils, The take.
off point from the membrane curve In Figure 6 Is the
maximum polnt of the resonance density. Thorelore, it is
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expected that the maximum po.. t of the resonance density
is closer to unity as the thickness of the shell decreases and
that the peak becomes higher (see Figures 7 and 8). For
frequencies above £ = 1, the resonance density decreases
slowly with frequency.
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At high frequencies, @ » | when the resonances
approach the plate range. it is convenient to use the asymp-
totic form. By differentiating Equadion (14b), the resonance
density for a spherical shell becomes:

dn z_(1 2)‘* !
P} B Q1/2(1-_15)%
Q
for Q>1 , (26a)

and, in the plate range, becomes:

2\%
dn _ 1 (1-» 1
&~ 2(-—'6 ) o7 fr e, (26)

with a maximum value given by:

an )
oo 0.433/8% . (26c¢)

Figures 7 and 8 show the resonance density of the two
spherical shells in vacuo. Curves (1), (2), (3), and (4) repre-
seat, respectively, the resonance density for the exact
{Equation (22)], the low frequency approximation [Equa-
tion (24)], the Jdensity for midrange frequencies’ approxima.
tion [Equation (26a}], and the high frequency plate range
[Equation (26b)), The maximum point in the resonance
density spectrum separates the resonances into membrane
range and plate range, Resenances hetween those two
ranges arc in the so-called “coupling range.” The sogment of
Curve (1) for > 1.5 matches with that of Curve (4) for the
plate range, and Curve (3) matches Curve (1) down to 2 ™ 1.
Curve (2) matches with Curvo (Dup to Q= 1.0, Inthe
membrane range, both shells have the same resonanse density
{sce Equation (24)). The higher rosonance density of the
thin shell implies that it has a higher response when one con-
sidors the driving point admittance (DPA) because the mean

value of the DPA {11] is:
T
Y. w——— 27
¢ 2, Mn ’

where M, is the medal mass of the spherical sheli { Equa-

tlon (191}, Figure 9 shows the mean value of the DPA of the

shells. For 251,

( - z)&s
m__\—=

ﬂﬁ
and
Y, ~ Satp ! fora®1 . (29)

When £2< 1, Ky in Equation (271 s replaced by Aw be-
cansg the shall does not have many meodes in the membrane
range, and also. 3 3 dB L added to Equation (28) due to the

 fmaginary part ol the mean value of the DPA (s

A A AR T ¥ T R I ou GNP PRt Y P

Reference 11). Thus.

Y, = An+1) ,Q<1, (0
8a2 pch /3(1 -v1AQ
where AQ = (wp4q =wy) /W,
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THE POINT EXCITED VIBRATION OF A SHELL

The response of u point excited shell In an acoustic
medium I3 analyzed In this soction. The fluid pressure Pyy in
Equation (12) is no longer assumed to be zero, Since the
vadlated acoustle pressure Py, is an outgoing wave, it ¢an be

-expressed In terms of the spherical Hankel function of ﬁm
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kind and order n,. Therefore,
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where Zyp = ipc [hy (ka)/hp (ka)] is defined as the acoustic
radiation impedance.

The radial velocity is expressed in terms of the applied
force and the total impedance of the shell by

Wy, = Piy/Zp (32)
where Zy is the modal impedance of a submerged shell.
The driving point admittance and the response pressure

field are examined first. Consider a unit concentrated force
which can be described by:

o0
= (1/azad) z 2n+ DB, (@)
n=0

= PP . 33
n=0

From Equation (32), the modal velocity of the shell in an
acoustic medium is given by:

W= 2n + |

{34)
n 4u'a22
The radial volocity of the submerged shell is glven:
R o0
WD )R, ez, | (35)

n'fo

The driving point admittance (DPA) is defined as the ratio
of the radial velocity of the shell to the applied force at that
particular point. The DPA is obtained directly by setting

.on= ) [Py mn 1] in Equations (33) and (35) and taking tha
- ratioy

fn+ l.
LT , T2,
e e et 3"-2—-— . | (36)

g

. I‘h\ulm mbsmuting Equation (34) for Wn into Equation (31 ).
" the pm%mxc flsld oi o submarged shell is:

. Z ( r
pyltn) = 22(2»”) -4 " Pn ™. @3N

- At resenance, the imaginary part of the total impedance
Z, lsequal to zero, Then, 2 reduces to the sum of the in-
ternal damping rgy of the shell and the acoustic resistance
fan, where fy, = Real [lpchptka)/hytka)] . The modal im-
pedance of a submerged shioll is expressed convenlontly as:

Z,(w) =

« {rpn * ()] +HM (@)~ M ()]

Lyn + 2y, _

where Zmn = rmp + iMmn and Zap =rap ~iwMay , for
mode numbern=0,1,2,....

NUMERICAL RESULTS

Calculations are made for twn different duralumin
spherical shells when submerged in air and water. The physi-
cal properties of the shell material, fluid, and the dimensions
of the shells are listed in Table 1.

TABLE |
PHYSICAL PROPERTIES OF A DURALUMIN
SPHERICAL SHELL AND ACOUSTIC MEDIA

Thickness (h) 0.0514”,0.1069”

Radius (a) 8"

Young's Modulus (E) 1.037 X 107 psi

Poisson’s Ratio () 0.335

Mass Density of the Shell (o) 2,649 X 104 Ib. sec.fin.4
Mass Density of Air (o) 1.15 X 10-7 Ib. see.2/in.4

Mass Density of Water (p) 9.645 X 10-5 1p, sec./in.4
Velocity of Sound in Alr (¢} 1.286 X 104 in./sec.
Velocity of Sound in Water (¢) 6 X 109 In./sec.

(Fadajy 14.59X @

(kawater 330X 102X Q
(0¢Iwater 5.79 b, sec.fin.3

(pCair 1.56 X 103 b, sec./in.3

The frequency spectra of the driving point admittance
(DPA) for point excited spherical shells were calculated
with structural damping factor 6 X 107 (except 6% 10
in Figures 11 and 12) for duralumin. For vibrution in air,
the normalized acoustic resistance at the resonance frequency
of each mode was found to be dominant. On the other hand,
when the shell is vibrating in water, the structural damping
was found to be dominant because the normalized modal
acoustlc resistance was negligible at the resonance freguency

" of each mode.

The amplitude of the normalized DPA for the two
duralumin shells tested were computed and plotted in

" Figures 10 to 14, The DPA was normalized to that for a

point driven infinite plate having the same thickness, as

given in Eq. (29). The low frequency behavior is dominated
by the mass of tha shell, Thus, for the non-normalized DPA,
the thin shell should be approximately 6 dB higher. However,
when one nomalizes with DPA of a plate with the same
thickness, the normalization is proportional to h=2, so

that the normalization causes a 12 dB increase in the DPA

-ol a thick shell, so the not change of the normalized admits

tance is 6 AB increase for the thiek shell. The minimum
response for frequencics loss than the first resonance cor
responds to the first anth-resonance between the rigid body
frequency (£ = 0) and the first resonance (f19). Thus,

for frequencies below the first anthresonance. the motion
At the contur of gravity ol the frealy suspended shell i3
governed by a terin Yo ® IIZ‘, s [ flwM, whare M is the
total mass of the shell, Therefore, the slope of the response
is 6 dB per octave, For classical shells, the resanances are
woll-spaced. and the resonaut response shows distinet peaks
in Figures 10, 11, and 12, whlch Is not evident for the

- membrane theory,
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For vibration in water, the shell exhibits a similar be-
havior in the low frequency range, except that the DPA Is
much Pywar in water than In air. This is oxplained by the
fact that the virtual mass of the displaced acoustic medium at

" low frequencies Is negligible in alr when compared to the muss
of the shell but s much higher than the mass of the shell vi-
brating In water. Thus. since the admittance below the flrst
resonance is 1/wM, M being the total mass being vibrated, the
admittance In air is much higher than that in water, However,
the admittance of the shell at resonances Is lower in air than

in water because of the previously explained behovior of the .

modal admittances in air and in water,

The minimum point in Figures 10 through 14 will shitt
due 10 the position of the first resonance, The position of the
first resonance of the shell In alr s the same for all shell thicks
nesses. so that the anti-resenance does not dhify, However,
the first resenance of the shells submaerged 19 water Js almest.
one-tenth of that {n alr, vo that the becutlon of the antk
resonance shifts dawn accordingly,

it vacuo o utr, the mean value of the DPA for a shell
will approach asymptotically the value of the impedaiee of .

Zo dude i e K et iy ite d Ve Moo i W ore

an infinite plate. The result is shown in Figure 12 when the
line MN in the resonant spectrum is the predicted mean value
computed by Equation (27). The resonant mean value is in
excellent agreement with the line MN, but the predicted
mean value in the first few modes of the membrane range
fails to agree. This is because there are so few resonances i
the membrane range.

The mean value method can also be used to predict
the mean value of the DPA of a shell in water. However, it
has to overcome the difticulty due to the introducdon ot
the virtual mass in the equation of motion. At very high
frequencies, the mean value of the DPA of a submerged
shell again approaches the unloaded intinite plate value.

GENERAL EXPERIMENTAL APPROACH

The resonance frequency measurements were perfurmed
for both 14-gauge (actual thickness h = 0.0514 inch) and
8-gange (actual thickness h = 0.1069 inch) thick spherical
shells, The directivity pattern measurements were taken on
the 8-gauge shell. Each of these shelle is 16 inches in diameter
and is constructed of duralumin molerial. The spherical shells
were fabricated from two hemispherical sholls welded at the
equator and the welds ground smouth,

Tho experimental measuroments were carried out In the
ancchole chamber at the Water Tunnol Building and the ane
echole witer tank at the Applied Science Building of the
Pennsylvania State University. The anechoie chamber was
built initially In support of this experhmental pregram to in-
vestigate the fluid teading effects on olastic structures. It
has internal dimensions of 11 X 12 X 18 feet, The sound
absorbing wal's are composed primarily of rock-woel fiter-
glass insuintion, uir volds, and wood frame members, H is
considered as a somb-anechoie for frequences less than | kHz'
and mmederately anechoic for higher frequencles. The water-
filled ancehole tank., which is 12 feet long, 4 feet wide, und
11 feet doep, Is lined with Insulkrete wedges. Between 20
and 30 kHz, the tank is better than 90 percent absorbent,
The absorption fulls off rapidly below 20 AHa. The sphorical
shells wese located near the center of the tank er the chamber,
“The source and recelver were placed on a horlzontat plane '

- through the venter of the shell perpendisular to the wully of

the tuak or the chamber,

The resonances of spharical shells were measured by

" plotting the frequeney response and the moda) pattern, A - '

contimiots shiusoldal wave was applied to the shaker to
exvite the shell in both water and ale. A whomatic dlagram

- ol the test m-up W shown lumute 15,
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The driving point admittance in air of the thin and

1Y thick shells are shown in Figures 160 ~ 1 7b, respectively.
-y Both shells exhibit an antiresonance in the low frequency
range as was predicted earlier and shown in Figures 10 and
¢ 1, In the higher frequency range, the moasured resonances
) l: are the peaks of the admittance, These resonance frequencles
A were [dentified by the measurements of the moste shape by
use of an accelerometer and shown in Figures 18 and 19, for
& the two shells, The difference between the predieted snd
8 the measured resonance frequencies is small for most of the
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. Figures 27 and 23, respectively. for thin and thiek shells. -
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CONCLUSION

The analytical and experimental study of the vibration
response of point excited shells in air and in water indicates
that the bending theory of deformation of shells is adequate
for the frequency range of interest, ka < 30. Furthermore,
the influence of shear deformation and rotatory inertia was
found to be negligible for frequencies up to ka = 30.

The method for computing the natural frequencies of a
submerged shell by use of generalized coordinates and the
iteration method proved to be accurate, when one compares
the predicted vs measured resonances. The resonances of a
submerged shell were shown to be influenced heavily by the
virtual mass of the displaced fluid in most of the frequency
range under investigation, even though in the high frequency
range, this influence disappears. The mode shapes at reso-
nance for vibration in air and in water were found to
identical, as predicted.
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DAMPING OF SHALLOW-BURIED STRUCTURES

DUE TO SOIL-STRUCTURE INTERACTION

Felix S. Wong and Paul Weidlinger
Weidlinger Associates
Menlo Park, California and New York, New York

dynamic soil-structure interaction,

tural motiom.
embedded in an elastic soil medium.

Damping of the motion of burled structures is derived based on the mechanics of

The interplay between the structural motion
and the soil loading on the structure results directly in the damping of the struc-
The derivation is illustrated by an example of a horizontal slab

INTRODUCTION

It is the current practice to obtain hard-
ness levels of shallow-buried structures from
analyses using an undamped SDOF elastic-plastic
model. Rasults of recent and past Lests on bur-
ied structures have shown thut these analyses
underpredict the lethal overpressure; a number
of fully-buried structures heve retained their
protective capability at airblast overpressures
higher than thelr predicted collapsc load {1,2].
This is {llustrated in Fig., 1 which is taken
from (1), The undamped SDOF calculation results
shown in the figure use currently accepted pro-
caedurea for modifying the period to account for
soil cover} calculation for the roof load in-
cludes attenuation of the overvpressure with
depth, but no damping and soil-struycture inter-
action effects. : '

In an attempt to explain the apparent over= -

consorvatism in current methods, Kiger and Bale
sara (2] rvetained the SDOF approachbut suggested
that a high damping ratio should be used to ge=
‘count for energy less. (The load-deflecticn
relationship obtained from static tests of the
samg sell-structure configuration vas also used
to account for “arching."' They indicated that
& 20 percent damped SDOF model could accurately
-predict the permanent deflection of the roof ele-
BN, .

‘The need for higher demping was also sug-
gested by Windham {3], and by Wojeik and lsen-
berg {4]. The latter attributed tha damping to
the radiatton of energy away from the structure.

. Elastic finite elemont unalyses vere conductad

and damping vas assesscd by the log decrement of

poak displacoment in successive cycles,

An analycical derivation of damping for i
‘this class of buried etructures is» given in this

paper. The derivation is based on the mm;u -
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of dyramic soil-structure interaction, As
stress waves in the soil strike a soil-struc-
ture interface, they give rise to scattered and
transmitted waves. The transmitted waves impart
particle velocities to the structure; motion of
the structure imparts rarefaction waves to the
soil, and loading exerted by the soil on the
structure is lessened or relieved, This pheno-
menon, referred to as dynamic soil-structure
interaction, is ceen to lead to the high damp=
ing in structural motion,

The scope of the work is limited to elas-
tic soil-structure ccnfigurations in order to
clarify the origin of the damping due to soil-
atructure interaction. The actual interaction
process is, of course, much more complex and
invoives inelastic properties of the soil and
nonlinear interface conditions. Analytical
solutions are difficult to obtain and numerical
wetheds must be used., However, the basic mech-
anisms of reflection of the soil stress vaves
at the soil-structure interface, the relief of
the interface lcad due to motion of the atruc-
ture avay from the soil, and the resultant
danping in the structural motion remain the
sama as those illustrated herein,

DYNAMIC SO1L-STRUCTURE INTERACTION

The eoupling baetween loading and structur=
al responsa can ba illustrated by referring to
Fig. 2 which 1a a characteristic disgram of one-
dimennional elastic wave interaction betueen &

- bm layer of soil and a concrete slab 1.5nthick.

When the f{ncident comprassive wave first rea-.
ches the soil-concrate interface (point A), it
is veflected as vel. as transmitted. In this
axanple, abaut 80% of it ie reflected and 180%
transaitted according to the following equa-
tionss . -
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Figure 1. Recent test results of model protective structures [l].
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2p ¢
0. = —=L S g
T P.Ce + PeCq 1 (1)
pec =-pc
o c e s8 )

R Pc + p.c 1
cc $'8

where ¢ 0, are the incident, transmitted

g,
I* 'T* 'R
and reflected stiess components, respectively;
pccc is the acoustic impedance of concrete and

PeCyq that of scil; pis the mass density of the

material and ¢ its dilatational wavespeed [S5].
Hence for a 100 MPa incident wave, the trans-
mitted wave is 180 MPa, The transmitted wave
is reflected at the free edge (point A') as a
tensile wave, denoted by a dotted line, of mag-
nitude =360 MPa. Upon encountering the inter-
face, the -360 MPa wave in turn is reflected
ag a compressive wave of magnitude 300 MPa and
transmitted as a tensile wave of magnitude =61
MPa. The reverberation process within the
concrete continues as the wave goes from B to
B', from C to C', etc.

This multiple wave reflection/refraction
phenomenon is well-known. When the applied
incident wave has a constant magnitude of 100
MPa, i.e. a step load, the stress at the soil-
concrete interface is 100 + 80 = 180 MPa at

point A, 100 + 80 - 60 = 120 MPa at point B,
100 + 80 -~ 60 - 50 = 70 MPa at point C and so
on, Hence, in two transit times across the
thickness of the concrete slab, the initial
peak of 180 MPa has dropped to 120 MPa, in four
transit times to 70 MPa and so on.

When the applied load is not a step but
decays with time and has a finite duration, the
decay of the interface stress depends on the
load duration. Some results for a triangular
pulse are given in Fig., 3. Two observatiors
regarding the interface stress can be made. The
initial amplification of the interface stress
depends on the impedance ratio across the inter-
face, Secondly, this amplification is short-
lived. In 2 to 4 transit times across the
concrete, the layer will have attained thevelo-
city that it should due to the action of the
interface stress and begin to move away from
the soil. This motion generates rarefaction or
relief waves into the soil, thus relieving the
loading on the concrete layer,

This observation is elementary but crucial
to the understanding of soil-structure inter-
action: SSI is intimately connected to motion
of the structure relative to soil, When struc-
tural motion is in the direction of (in phase
with) the soil or free-field motion, itrelieves
the interface load. Similerly, when structural

250, T 1 T
200,
150.r
. t = « msoc
% (+]
~ 100,
"
@
o
&
0.
g
0.
to = 10 u;ec
- i ] L ]
i, N 12, 16,
Time (asec)

Figure 3. Interaction strasa-tive histovy as 4 Yunction of incidomt-pulse duration.
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motion is against (out-of-phase with) the soil
motion, the interface load is enhanced.

For one~-dimensional situations, this ob-
gservation can be summarized quite simply asfol-
lows. From wave propagation results such as
those given in Fig. 2, the relief (or enhance-
ment) in interface stress, 0, due to motion of
the concrete layer, v, is given by

g = -pcv (3)

when v is positive in the direction of free-
field wave propagation, and pc is_the impedance
of soil noted earlier. Positive 0 means it is
compressive, i.e. when motion is out-of-phase
with the free-field motion and negative O means
it is tensile, i.e. when motion is in-phase with
the free field. It will be shown that this
simple representation of soil-structure inter-
action leads to the damping in a class of bur-
ied structures where the SSI is basically
planar.

SSI AND STRUCTURAL DAMPING

The response 2 of a structure buried in
a medium subjected to a known free-field excita-
tion can be represented by

thz-ul (4)
vhere M is the mass matrix, K the stiffness
watrix, both of dimension N by N, N being the
number of degrees of freedom. OI’ a vector of

dimension N, represents the interaction pressure
(unit tributary area is implied) and can be writ-

Gy = 0p+ 0y (5)

' vhere O, is the reflected (or radiated) pres-

sure at the interface, and Op the free-field
excitation.
Assuming that the reflected pressure at

Jarly time can be approximvated by the planevave
relatiouship Eq. (3), ;ha reflected preisute

. can be cxprcssad as

% ® .c.UR - (6
vhere o is the mass density of the soll, c, v

ite P-uavc velocity and Un the rotleeacd patti-
¢le velocity.

The reflected par:iclo valeet:y can also be

vrtttiu as

Up oyt 2 : 4]

vhera Up 19 th free-tield particle velocity end

g = 0,0 Up ~ P 2 (8)
and since

Op = PgC sUF * €)]

Eq. (4) may now be expressed as

MZ +pc .+ KZ =20, . (10)
Eq. {10) expresses the response Z in terms
of Ops the free-field excitation. Since O is

independent of the response of the structure 2,
the problem of soil-structure interaction as
given by Eq. (10) 1s uncoupled; the free-field
excitation can be analyzed first and separately
from the structural motion analysis which fol-
lows. The effect of SSI ig represented by a
viscous damping term, pscsz. which depends on

the properties of the medium, It is this damp-
ing which (a) incorporates the SSI effect on
the loading perceived by the structure and (b)
effectively decouples the analysis of thestruc-
ture from its surrounding medium.

The relationship expressed in Eqs, (6) and
(9) is based on one-dimensional wave propagation
considerations. For two-dimensional problems
with simple geometries such as rectangular plane
box structures, the relationship is an approxi-
mation, The assumption that the reflection
process is (at least) initially plane has been
extensively tested by finite element models for
various span-depth ratios of the structure,
The error involved in such applications is i1-
lustrated in Pig. 4 where the SSI loadings on a
slab with a span of 6m obtained from two-dimen~
sional finite element analysis and using the
approximation Bq. (10) are compared.

Fig. 5 compares the corresponding structure
motion time histories. The highly damped nature
of the velocity response is apparent. Further-
more, by comparing Figs. 4 and 5, the rellef and -
enhancement of the SS5I load corresponding te the

- phasing of the structure and soil motions are -

" clearly illustrated.

- MODAL DAMPING

In modal unalysis the gnnaralizadAdanptna

Cf in the k‘ wode {s given by

2 is the veélocity of the structure at the inter~ .

fngof Conbining Eqe. (Q} and (7) gives

18
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vhere 0& 14 the kth made shape vector and the

superscript T indicates its transpose. Similar-
1y, the generalized mace is given by

L oun
and tha kth damping racio is V

S
ﬁ'zukn;

- (13)
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where w, 1is the kth modal frequenecy,

Specializing to Eq. (10), the modal damp-
ing due to SSI is

©
<]
—

%5 d, 2w 14)

(e
Tw

since both the damping coefficient C = memvand

the mass of the roof structure with constant
thickness dc and density p.» are constant.

Eq. (14) states that the modal damping due
to SSI effect is inversely proportional to the
modal frequency and unit mass of the structure,
but is directly proportional to the acoustic
impedance of the medium. Alternately, multiply-
ing and dividing the righthund side of Eq. (14)
by s the wavespeed of the roof material,

glves
pPc C
1
g =88, £, 2 (15)
k Dccc dc Zwk

Recalling Wy ™ Zﬂ/Tk. where Tk is the period of
the kth mode, Eq. (15) becomes

— (16)
ce ¢

where Tc - dc/ec is the transit time of the

roof, lence, the modal damping due to SSI ef=-
fect is preportional to the soil-structure
impedance ratie and the ratio of modal pericd
to transit time in the structure.
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CONCLUS1O0NHS

Dynamie peil=structute intevaetien for

. puried structures is a cemplox phenomanon, We

have considored a simplified subset of this

SOOI A LA AN SOOI P OO s
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class of problems to delineate the relationship
between dynamic SSI and damping of the struc~
tural motion, Damping is shown to be a direct
result of the interaction mechanism.

Damping comes also from other sources:
digssipation in the soil due to hysteresis, en-
ergy loss due to interface friction and damping
internal to the structure. By consideringelas-
tic soil/structure configurations, we have
eliminated these sources in the present study
in order to concentrate on perhaps the largest
contributor to damping in protective structures,
and to illustrate its origin.
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